Đề bài

Cho một tam giác vuông. Biết tỷ số hai cạnh góc vuông là \(3 : 4\) và cạnh huyền là \(125cm\). Tính độ dài các cạnh góc vuông và hình chiếu của các cạnh góc vuông trên cạnh huyền.   

Phương pháp giải - Xem chi tiết

Áp dụng tính chất dãy tỉ số bằng nhau:  

\(\dfrac{a}{b} = \dfrac{c}{d} = \dfrac{{a + c}}{{b + d}}\)

Cho tam giác \(ABC\) vuông tại \(A\), đường cao \(AH\). 

Khi đó ta có các hệ thức sau:

+) \(A{B^2} = BH.BC\) 

+) \(A{C^2} = CH.BC\)

+) \(AB^2+AC^2=BC^2\) (định lý Pytago).

Lời giải chi tiết

Giả sử \(\Delta ABC\) vuông tại \(A\) chiều cao \(AH, BC=125cm\) và \(\dfrac{{AB}}{{AC}} = \dfrac{3}{4}\)

Từ \(\dfrac{{AB}}{{AC}} = \dfrac{3 }{4}\) suy ra: \(\dfrac{{AB}}{{3}} = \dfrac{{AC}}{4} \Rightarrow \dfrac{{A{B^2}}}{{ 9}} =  \dfrac{{A{C^2}}}{{16}}\)

Theo tính chất dãy tỉ số bằng nhau, ta có:  

\(\dfrac{{A{B^2}}}{9} = \dfrac{{A{C^2}}}{{16}}\)\( = \dfrac{{A{B^2} + A{C^2}}}{{9 + 16}} = \dfrac{{A{B^2} + A{C^2}}}{{25}}\, (1)\) 

Theo định lí Pytago, ta có:

\(\eqalign{
& B{C^2} = A{B^2} + A{C^2} \cr 
& \Rightarrow A{B^2} + A{C^2} = {125^2} = 15625\,(2) \cr} \)

Từ (1) và (2) suy ra: \(\dfrac{{A{B^2}}}{9} = \dfrac{{A{C^2}}}{{16}}\)\( = \dfrac{{A{B^2} + A{C^2}}}{{25}} = \dfrac{{15625}}{{25}} = 625\)

Suy ra :

\(A{B^2} = 9.625 = 5625\)\( \Rightarrow AB = \sqrt {5625}  = 75(cm)\)

\(A{C^2} = 16.625 = 10000\)\( \Rightarrow AC = \sqrt {10000}  = 100(cm)\) 

Theo hệ thức liên hệ giữa cạnh góc vuông và hình chiếu, ta có:

\(A{B^2} = BH.BC\)\( \Rightarrow BH = \dfrac{{A{B^2}}}{{BC}} \)\(= \dfrac{{{{75}^2}}}{{125}} = 45(cm)\)

\(CH = BC - BH\)\( = 125 - 45 = 80(cm).\) 

soanvan.me