Đề bài
Chứng minh rằng:
\(a)\) \(\left( {a + b} \right)\left( {{a^2} - ab + {b^2}} \right)\)\( + \left( {a - b} \right)\left( {{a^2} + ab + {b^2}} \right) = 2{a^3}\)
\(b)\) \({a^3} + {b^3}=\left( {a + b} \right)\left[ {{{\left( {a - b} \right)}^2} + ab} \right]\);
\(c)\) \(\left( {{a^2} + {b^2}} \right)\left( {{c^2} + {d^2}} \right)\)\( = {\left( {ac + bd} \right)^2} + {\left( {ad - bc} \right)^2}\)
Phương pháp giải - Xem chi tiết
+) Sử dụng hằng đẳng thức để biến đổi vế trái bằng vế phải hoặc ngược lại biến đổi vế phải bằng vế trái:
\(A^3+B^3=(A+B)(A^2-AB+B^2)\)
\(A^3-B^3=(A-B)(A^2+AB+B^2)\)
\( (A+B)^2=A^2+2AB+B^2\)
\( (A-B)^2=A^2-2AB+B^2\)
Lời giải chi tiết
\(a)\) Biến đổi vế trái:
\( \left( {a + b} \right)\left( {{a^2} - ab + {b^2}} \right)\)\( + \left( {a - b} \right)\left( {{a^2} + ab + {b^2}} \right) \)\( = a{}^3 + {b^3} + {a^3} - {b^3} = 2{a^3} \)
Vế trái bằng vế phải, đẳng thức được chứng minh.
\(b)\) Biến đổi vế phải:
\(\left( {a + b} \right)\left[ {{{\left( {a - b} \right)}^2} + ab} \right] \)\(= \left( {a + b} \right)\left[ {{a^2} - 2ab + {b^2} + ab} \right] \)\(= \left( {a + b} \right)\left( {{a^2} - ab + {b^2}} \right) = {a^3} + {b^3} \)
Vế phải bằng vế trái, vậy đẳng thức được chứng minh.
\(c)\) Biến đổi vế phải:
\( {\left( {ac + bd} \right)^2} + {\left( {ad - bc} \right)^2} \)\(= {a^2}{c^2} + 2abcd + {b^2}{d^2} + {a^2}{d^2}\)\( - 2abcd + {b^2}{c^2}\)\(= {a^2}{c^2} + {b^2}{d^2} + {a^2}{d^2} + {b^2}{c^2} \)\(= {a^2}{c^2} + {b^2}{c^2} + {a^2}{d^2} + {b^2}{d^2}\)\(= c^2\left( {{a^2} + {b^2}} \right) + {d^2}\left( {{a^2} + {b^2}} \right) \)\( = \left( {{a^2} + {b^2}} \right)\left( {{c^2} + {d^2}} \right) \)
Vế phải bằng vế trái, đẳng thức được chứng minh.
Cách khác:
Biến đổi vế trái:
\((a^2 + b^2)(c^2 + d^2)\)
\(= a^2c^2 + a^2d^2 + b^2c^2 + b^2d^2\)
\(= (a^2c^2 + 2abcd + b^2d^2 ) + (a^2d^2 – 2abcd + b^2c^2)\)
\(= [(ac)^2 + 2abcd + (bd)^2 ] + [(ad)^2 – 2abcd + (bc)^2]\)
\(= (ac + bd)^2 + (ad – bc)^2\)
Vế trái bằng vế phải, đẳng thức được chứng minh.
soanvan.me