Đề bài

Phương trình tiếp tuyến của đồ thị hàm số \(y = {x^4}-2{x^2}\) tại điểm có hoành độ \(x =  - 2\) là:

A. \(y =  - 24x + 40\)        B. \(y = 24x - 40\)

C. \(y =  - 24x - 40\)         D. \(y =  - 24x\)

Phương pháp giải - Xem chi tiết

- Tính \(y'\).

- Phương trình tiếp tuyến tại điểm \(\left( {{x_0};f\left( {{x_0}} \right)} \right)\) được viết theo công thức \(y = f'\left( {{x_0}} \right)\left( {x - {x_0}} \right) + f\left( {{x_0}} \right)\).

Lời giải chi tiết

Ta có: \(y' = 4{x^3}-4x;y\left( { - 2} \right) = 8;\) \(y'\left( { - 2} \right) =  - 24\).

Phương trình tiếp tuyến phải tìm là: \(y = y'\left( { - 2} \right)\left( {x + 2} \right) + y\left( { - 2} \right)\) hay \(y =  - 24\left( {x + 2} \right) + 8\) \( \Leftrightarrow y =  - 24x - 40\).

Chọn C.

soanvan.me