Đề bài

Cho đường tròn \((O)\). Khoảng cách từ \(O\) đến dây \(MN\) của đường tròn bằng \(7cm\), \(\widehat {OMN} = {45^o}\). Trên dây \(MN\) lấy một điểm \(K\) sao cho \(MK=3KN\) (h.123). Độ dài đoạn \(MK\) là:

(A) \(10,5\;cm;\)                          (B) \(9\;cm;\)

(C) \(14\;cm;\)                              (D) \(12\;cm.\)

Hãy chọn đáp số đúng.

Phương pháp giải - Xem chi tiết

Sử dụng: Trong tam giác cân đường cao ứng với cạnh đáy đồng thời là đường trung tuyến, đường trung trực, đường phân giác.

Lời giải chi tiết

Gọi \(H\) là chân đường cao hạ từ \(O\) đến \(MN\).

\(\Delta OHM\) có \(\widehat {OHM} = {90^o};\,\widehat {OMH} = {45^o}\) nên \(\Delta OHM\) vuông cân tại \(H\).

\( \Rightarrow  MH=OH=7\,cm\).

Lại có \(\Delta OMN\) có \(OM=ON=\) bán kính nên \(\Delta OMN\) cân tại \(O\).

Do đó \(OH\) vừa là đường cao đồng thời là trung tuyến của \(\Delta OMN\).

\( \Rightarrow MH = NH = 7\,cm.\)

Ta có: \(MN=MH+NH=7+7=14\,cm\).

Mà \(MK=3KN\) nên \(MK = \dfrac{3}{4}MN = \dfrac{3}{4}.14 = 10,5\,\left( {cm} \right).\)

Chọn A.

soanvan.me