Lựa chọn câu để xem lời giải nhanh hơn

Cho hình lập phương ABCD.A’B’C’D’ có cạnh bằng a. Hãy xác định tâm và bán kính mặt cầu:

LG a

a) Đi qua \(8\) đỉnh của hình lập phương.

Lời giải chi tiết:

Tâm mặt cầu là giao điểm các đường chéo chính.

Bán kính mặt cầu là \(OA = \displaystyle{1 \over 2}AC’\)

Đường chéo hình vuông cạnh \(a\) là \(AC = a\sqrt 2\)

Xét tam giác vuông \(ACC’\) tại \(C\):

Ta có: \(AC' = \sqrt {A{C^2} + C'{C^2}} \) \( = \sqrt {{{\left( {a\sqrt 2 } \right)}^2} + {a^2}}  = a\sqrt 3 \)

Do đó \(AO = \dfrac{1}{2}AC' = \dfrac{{a\sqrt 3 }}{2}\).

Vậy bán kính mặt cầu đi qua \(8\) đỉnh hình lập phương cạnh \(a\) là \(R = \dfrac{{a\sqrt 3 }}{2}\).

LG b

b) Tiếp xúc với \(12\) cạnh của hình lập phương.

Lời giải chi tiết:

Vì ABCDA'B'C'D' là hình lập phương nên các tứ giác: ABC’D’ , BCD’A’, CDA’B’, DAB’C’, AA’C’C, BB’D’D là các hình chữ nhật bằng nhau.

Xét hình chữ nhật ABC’D’ ta có:

O là trung điểm của AC’ và BD’ \( \Rightarrow OA = OB = OC' = OD'\)

\( \Rightarrow \Delta OAB = \Delta OC'D' \Rightarrow d(O,AB) = d(O,C'D') = \frac{{BC'}}{2} = \frac{{a\sqrt 2 }}{2}\)

Tương tự ta cũng chứng minh được khoảng cách từ O đến các cạnh còn lại là \(\frac{{a\sqrt 2 }}{2}\)

Suy ra tồn tại mặt cầu tâm O, bán kính \(\frac{{a\sqrt 2 }}{2}\) tiếp xúc với 12 cạnh.

Vậy mặt cầu \((O,\frac{{a\sqrt 2 }}{2})\) tiếp xúc với 12 cạnh của hình lập phương.

LG c

c) Tiếp xúc với \(6\) mặt của hình lập phương.

Lời giải chi tiết:

Tâm mặt cầu tiếp xúc \(6\) mặt của hình lập phương là trung điểm \(I\) của đường nối hai tâm đáy.

Bán kính mặt cầu là \(r= \displaystyle{1 \over 2} AA’ \) \(=\displaystyle{a \over 2}\)

soanvan.me