Lựa chọn câu để xem lời giải nhanh hơn

Đề bài

Bài 1. Chứng minh rằng hai phân thức \({{a + 3b} \over c}\) và \({{ac + 3bc} \over {{c^2}}}\) bằng nhau.

Bài 2. Tìm đa thức A, biết :

a) \({{a + b} \over {{a^3} + {b^3}}} = {1 \over A},\) với \(a \ne  - b\)

b) \({{4{x^2} - 4xy + {y^2}} \over {{y^2} - 4{x^2}}} = {A \over {2x + y}},\) với \(y \ne  \pm 2x.\)

Bài 3. Chứng minh đẳng thức: \({{5{x^3} + 5x} \over {{x^4} - 1}} = {{5x} \over {{x^2} - 1}},\) với \(x \ne  \pm 1\) .

LG bài 1

Phương pháp giải:

Cho 2 phân thức bằng nhau rồi tích chéo, chứng minh đẳng thức luôn đúng

Lời giải chi tiết:

\(\displaystyle {{a + 3b} \over c} = {{ac + 3bc} \over {{c^2}}}\) nếu \(\left( {a + 3b} \right){c^2} = \left( {ac + 3bc} \right)c.\) 

Ta có: \(VP = \left( {ac + 3bc} \right)c = \left( {a + 3b} \right){c}.c\)\(= \left( {a + 3b} \right){c^2} = VT\) (đpcm).

LG bài 2

Phương pháp giải:

a. Tích chéo rồi rút A theo a,b

b. Tích chéo rồi rút A theo x,y

Lời giải chi tiết:

Bài 2.

a) Ta có: \(A\left( {a + b} \right) = {a^3} + {b^3}\)

\(\Rightarrow A\left( {a + b} \right) = \left( {a + b} \right)\left( {{a^2} - ab + {b^2}} \right)\)

\( \Rightarrow A = {a^2} - ab + {b^2}.\)

b) Ta có: \(\left( {4{x^2} - 4xy + {y^2}} \right)\left( {2x + y} \right) = A\left( {{y^2} - 4{x^2}} \right)\)

\( \Rightarrow {\left( {y - 2x} \right)^2}\left( {2x + y} \right) = A\left( {y - 2x} \right)\left( {y + 2x} \right)\)

\(\Rightarrow A = y - 2x.\)

LG bài 3

Phương pháp giải:

Biến đổi vế trái bằng vế phải

Lời giải chi tiết:

Ta chứng minh \(\left( {5{x^3} + 5x} \right)\left( {{x^2} - 1} \right) = 5x\left( {{x^4} - 1} \right)(*)\)

Biến đổi vế trái (VT), ta được :

\(VT=\left( {5{x^3} + 5x} \right)\left( {{x^2} - 1} \right) \)

\(\;\;\;\;\;= 5x\left( {{x^2} + 1} \right)\left( {{x^2} - 1} \right) \)

\(\;\;\;\;\;= 5x\left( {{x^4} - 1} \right) = VP\)

Vậy đẳng thức (*) được chứng minh.

Loigiaihay..com