6+6+6+6 bằng
-
A
6
-
B
6.2
-
C
6.4
-
D
64
Đáp án của giáo viên lời giải hay : C
Đếm số các số 6 trong tổng.
Sử dụng kết quả: \(a.b = a + a + ... + a\) (Có b số hạng)
Kí hiệu của phép nhân là \(a \times b\) hoặc \(a.b\)
Tổng trên có 4 số 6 nên 6+6+6+6=6.4
\(789 \times 123\) bằng:
-
A
97047
-
B
79047
-
C
47097
-
D
77047
Đáp án của giáo viên lời giải hay : A
Đặt tính rồi tính.
Vậy \(789 \times 123 = 97047\)
Tích \(4 \times a \times b \times c\) bằng
-
A
\(4\)
-
B
\(4ab\)
-
C
\(4 + abc\)
-
D
\(4abc\)
Đáp án của giáo viên lời giải hay : D
Nếu các thừa số đều bằng chữ, hoặc chỉ có một thừa số bằng số thì ta có thể không viết dấu nhân giữa các thừa số.
\(4 \times a \times b \times c\) là tích của 4 thừa số:
Thừa số thứ nhất là một số: 4
Thừa số thứ 2, thứ 3, thứ 4 lần lượt là các chữ a,b,c.
Vậy tích này chỉ có 1 thừa số bằng số nên ta có thể bỏ dấu “\( \times \)” giữa các thừa số đi, tức là
\(4 \times a \times b \times c = 4abc\)
Cho \(a,b,c\) là các số tự nhiên tùy ý. Khẳng định nào sau đây sai?
-
A
\(abc = \left( {ab} \right)c\)
-
B
\(abc = a\left( {bc} \right)\)
-
C
\(abc = b\left( {ac} \right)\)
-
D
\(abc = a + b + c\)
Đáp án của giáo viên lời giải hay : D
Tích \(\left( {ab} \right)c\) hay \(a\left( {bc} \right)\) gọi là tích cả ba số a, b, c và viết gọn là \(abc\).
Tính chất giao hoán: \(a.b = b.a\)
\(\begin{array}{l}\left( {ab} \right)c = \left( {a.b} \right).c = a.b.c = abc\\a\left( {bc} \right) = a.\left( {b.c} \right) = a.b.c = abc\\b\left( {ac} \right) = b.\left( {a.c} \right) = b.a.c = a.b.c = abc\end{array}\)
Cho phép tính \(x:3 = 6\), khi đó thương của phép chia là
-
A
\(x\)
-
B
\(6\)
-
C
\(3\)
-
D
\(18\)
Đáp án của giáo viên lời giải hay : B
Ta sử dụng (số bị chia) : (số chia) = (thương) để xác định thương của phép chia
Phép chia \(x:3 = 6\) có \(x\) là số bị chia; \(3\) là số chia và \(6\) là thương.
Nên thương của phép chia là \(6.\)
Trong phép chia có dư \(a\) chia cho \(b,\) trong đó \(b \ne 0,\) ta luôn tìm được đúng hai số tự nhiên \(q\) và \(r\) duy nhất sao cho:
\(a = b.q + r\)
Khẳng định nào sau đây đúng?
-
A
\(r \ge b\)
-
B
\(0 < b < r\)
-
C
\(0 < r < b\)
-
D
\(0 \le r < b\)
Đáp án của giáo viên lời giải hay : C
Định nghĩa về phép chia hết và phép chia có dư.
Khi chia a cho b, trong đó \(b \ne 0,\) ta luôn tìm được đúng hai số tự nhiên \(q\) và \(r\) duy nhất sao cho:
\(a = b.q + r\) trong đó \(0 \le r < b\)
Phép chia a cho b là phép chia có dư nên \(r \ne 0\)
Vậy \(0 < r < b\).
Biểu diễn phép chia \(445:13\) dưới dạng \(a = b.q + r\) trong đó \(0 \le r < b\)
-
A
\(445 = 13.34 + 3\)
-
B
\(445 = 13.3 + 34\)
-
C
\(445 = 34.3 + 13\)
-
D
\(445 = 13.34\)
Đáp án của giáo viên lời giải hay : A
Đặt tính rồi tính.
Xác định a,b,q,r trong phép chia vừa nhận được.
Số bị chia là \(b = 445\), số chia là \(b = 13\) thương \(q = 34\), số dư là \(r = 3\). Ta biểu diễn phép chia như sau: \(445 = 13.34 + 3\)
Trong các phép chia sau, có bao nhiêu phép chia có dư?
144:3
144:13
144:33
144:30
-
A
1
-
B
2
-
C
3
-
D
4
Đáp án của giáo viên lời giải hay : C
Đặt tính rồi tính.
Đếm số các phép chia có dư.
Vậy có 3 phép chia có dư
Kết quả của phép tính \(547.63 + 547.37\) là
-
A
\(54700\)
-
B
\(5470\)
-
C
\(45700\)
-
D
\(54733\)
Đáp án của giáo viên lời giải hay : A
Sử dụng tính chất phân phối của phép nhân đối với phép cộng để thực hiện phép tính.
$ab+ac=a(b+c)$
Ta có \(547.63 + 547.37\)\( = 547.\left( {63 + 37} \right) = 547.100 = 54700.\)
Tính nhanh \(125.1975.4.8.25\)
-
A
\(1975000000\)
-
B
\(1975000\)
-
C
\(19750000\)
-
D
\(197500000\)
Đáp án của giáo viên lời giải hay : D
Áp dụng tính chất giao hoán của phép nhân để tính nhanh
Ta có \(125.1975.4.8.25\)\( = \left( {125.8} \right).\left( {4.25} \right).1975\)\( = 1000.100.1975\)\( = 197500000\)