Đề bài
Trong các mệnh đề sau đây, mệnh đề nào đúng?
a) Đường thẳng \(∆\) là đường thẳng vuông góc chung của hai đường thẳng \(a\) và \(b\) nếu \(∆\) vuông góc với \(a\) và \(∆\) vuông góc với \(b\);
b) Gọi \((P)\) là mặt phẳng song song với cả hai đường thẳng \(a, b\) chéo nhau. Khi đó đường vuông góc chung \(∆\) của \(a\) và \(b\) luôn luôn vuông góc với \((P)\);
c) Gọi \(∆\) là đường vuông góc chung của hai đường thẳng chéo nhau \(a\) và \(b\) thì \(∆\) là giao tuyến của hai mặt phẳng \((a, ∆)\) và \((b, ∆)\);
d) Cho hai đường thẳng chéo nhau \(a\) và \(b\). Đường thẳng nào đi qua một điểm \(M\) trên \(a\) đồng thời cắt \(b\) tại \(N\) và vuông góc với \(b\) thì đó là đường vuông góc chung của \(a\) và \(b\);
e) Đường vuông góc chung \(∆\) của hai đường thẳng chéo nhau \(a\) và \(b\) nằm trong mặt phẳng chứa đường này và vuông góc với đường kia.
Video hướng dẫn giải
Phương pháp giải - Xem chi tiết
Xét tính đúng sai của từng mệnh đề (có thể vẽ hình để có cái nhìn trực quan hơn).
Lời giải chi tiết
a) Sai vì thiếu điều kiện \(\Delta \) cắt cả a và b.
b) Đúng.
c) Đúng.
d) Sai vì thiếu điều kiện đường thẳng đó cũng phải vuông góc với a.
e) Sai vì nếu điều đó xảy ra thì a và b vuông góc nhưng giả thiết chưa cho a vuông góc b.
soanvan.me