Đề bài

Tìm tập xác định của mỗi hàm số sau:

a) \(y =  - {x^2}\)

b) \(y = \sqrt {2 - 3x} \)

c) \(y = \frac{4}{{x + 1}}\)

d) \(y = \left\{ \begin{array}{l}1{\rm{ khi }}x \in \mathbb{Q}\\0{\rm{ khi }}x \in \mathbb{R}\backslash \mathbb{Q}\end{array} \right.\)

Phương pháp giải - Xem chi tiết

- Tìm các tập hợp các giá trị thực của x để biểu thức xác định hàm số có nghĩa.

Lời giải chi tiết

a) Ta thấy hàm số có nghĩa với mọi số thực nên \(D = \mathbb{R}\)

b)

Điều kiện: \(2 - 3x \ge 0 \Leftrightarrow x \le \frac{2}{3}\)

Vậy tập xác định: \(S = \left( { - \infty ;\frac{2}{3}} \right]\)

c) Điều kiện: \(x + 1 \ne 0 \Leftrightarrow x \ne  - 1\)

Tập xác định: \(D = \mathbb{R}\backslash \left\{ { - 1} \right\}\)

d) Ta thấy hàm số có nghĩa với mọi \(x \in \mathbb{Q}\) và \(x \in \mathbb{R}\backslash \mathbb{Q}\) nên tập xác định: \(D = \mathbb{R}\).