Lựa chọn câu để xem lời giải nhanh hơn

Cho hàm số \(\displaystyle y = {{(2 + m)x + m - 1} \over {x + 1}}\)(1)

LG a

Khảo sát sự biến thiên và vẽ đồ thị của hàm số với m = 2.

Lời giải chi tiết:

Với m = 2, ta có  \(y = {{4x + 1} \over {x + 1}}\)

Đồ thị:

LG b

Xác định các điểm có tọa độ nguyên trên đồ thị của (1) khi \(m \in Z\).

Lời giải chi tiết:

Ta có  \(y = 2 + m - {3 \over {x + 1}}\)

Vậy để y nguyên với x và m nguyên thì x + 1 phải là ước của 3, tức là:  \(x + 1 =  \pm 1\)  hoặc \(x + 1 =  \pm 3\) hay \({x_1} = 0;{x_2} =  - 2;{x_3} =  - 4;{x_4} = 2\) .

Vậy các điểm thuộc đồ thị của (1) có tọa độ nguyên là A(0; m  -1) ; B(-2; 5 + m); C(-4; 3 + m); D(2; m  + 1).

soanvan.me