Đề bài

Cho đường tròn \((O)\) đường kính \(AB\), dây \(CD\) không cắt đường kính \(AB\). Gọi \(H\) và \(K\) theo thứ tự là chân các đường vuông góc kẻ từ \(A\) và \(B\) đến \(CD\). Chứng minh rằng \(CH=DK\)

Gợi ý: Kẻ \(OM\) vuông góc với \(CD\).  

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

+) Kẻ đường kính vuông góc với dây.

+) Sử dụng tính chất: trong một đường tròn, đường kính vuông góc với dây thì đi qua trung điểm của dây.

+) Trong hình thang, đường thẳng song song với hai đáy và đi qua trung điểm của một cạnh bên thì đi qua trung điểm của cạnh bên còn lại.

Lời giải chi tiết

Vẽ \(OM \bot CD\) 

Vì OM là một phần đường kính và CD là dây của đường tròn nên ta có M là trung điểm CD hay \( MC=MD\)   (1) (định lý)

Tứ giác \(AHKB\) có \(AH \bot HK;\ BK \bot HK \Rightarrow HA // BK\).

Suy ra tứ giác \(AHKB\) là hình thang.  

Xét hình thang \(AHKB\), ta có:

\(OM // AH //BK\) (cùng vuông góc với \(CD\))

mà \(AO=BO=\dfrac{AB}{2}\)

\(\Rightarrow MO\) là đường trung bình của hình thang \(AHKB\).

\(\Rightarrow MH=MK\)   (2)

Từ (1) và (2)  \(\Rightarrow MH-MC=MK-MD \Leftrightarrow CH=DK\) (đpcm)

Nhận xét: Kết quả của bài toán trên không thay đổi nếu ta đổi chỗ hai điểm \(C\) và \(D\) cho nhau.