Đề bài

Nghiệm của phương trình sau \({\sin}^4 x-{\cos}^4 x=0\) là

A. \(\dfrac{\pi}{2}+k\pi (k\in\mathbb{Z})\)

B. \(\dfrac{\pi}{3}+k\pi (k\in\mathbb{Z})\)

C. \(\dfrac{\pi}{4}+k\dfrac{\pi}{2} (k\in\mathbb{Z})\)

D. \(\dfrac{\pi}{6}+k\pi (k\in\mathbb{Z})\).

Phương pháp giải - Xem chi tiết

Khai triển phương trình theo hằng đẳng thức số 2.

Sử dụng công thức nhân đôi \(\cos 2x={\cos}^2 x-{\sin}^2 x\).

Phương trình \(\cos x=a\)

Nếu \(|a|>1\) phương trình vô nghiệm

Nếu \(|a|\le 1\) khi đó phương trình có nghiệm là

\(x=\pm\arccos a+k2\pi ,k \in \mathbb{Z}\).

Lời giải chi tiết

Ta có: \({\sin}^4 x-{\cos}^4 x=0\)

\(\Leftrightarrow ({\sin}^2 x-{\cos}^2 x)({\sin}^2 x+{\cos}^2 x)=0\)

\(\Leftrightarrow-\cos 2x=0\)

\(\Leftrightarrow\cos 2x=0\)

\(\Leftrightarrow 2x=\dfrac{\pi}{2}+k\pi,k\in\mathbb{Z}\)

\(\Leftrightarrow x=\dfrac{\pi}{4}+k\dfrac{\pi}{2},k\in\mathbb{Z}\)

Đáp án: C.

 soanvan.me