Đề bài

Quan sát Hình 45.

a) Vì sao hai đường thẳng a và b song song với nhau?

b) Tính số đo góc BCD.

Phương pháp giải - Xem chi tiết

+ Sử dụng tính chất: Hai góc kề bù có tổng số đo bằng 180 độ

+ Nếu một đường thẳng cắt 2 đường thẳng tạo ra một cặp góc so le trong bằng nhau hoặc cặp góc đồng vị bằng nhau thì 2 đường thẳng đó song song

+ Sử dụng tính chất: Nếu một đường thẳng cắt 2 đường thẳng song song thì 2 góc so le trong bằng nhau, 2 góc đồng vị bằng nhau.

Lời giải chi tiết

a) Vì \(\widehat {{A_1}} + \widehat {{A_2}} = 180^\circ \) ( 2 góc kề bù) nên \(117^\circ  + \widehat {{A_2}} = 180^\circ  \Rightarrow \widehat {{A_2}} = 180^\circ  - 117^\circ  = 63^\circ \)

Vì \(\widehat {{A_2}} = \widehat {{D_1}}\) ( cùng bằng 63 độ)

Mà 2 góc này ở vị trí đồng vị

\( \Rightarrow \) a // b (Dấu hiệu nhận biết hai đường thẳng song song) ( đpcm)

b) Vì a // b nên \(\widehat {{B_1}} = \widehat {BCD}\) ( 2 góc so le trong), mà \(\widehat {{B_1}} = 55^\circ  \Rightarrow \widehat {BCD} = 55^\circ \)