Lựa chọn câu để xem lời giải nhanh hơn

Cho hình chóp \(S.ABCD\) có đáy là hình hình hành \(ABCD\). Tìm giao tuyến của các cặp mặt phẳng sau đây:

LG a

\((SAC)\) và \((SBD)\)

Phương pháp giải:

Muốn tìm giao tuyến của hai mặt phẳng ta tìm hai điểm chung của chúng.

Lời giải chi tiết:

Ta có: \(S\in (SAC)\cap(SBD)\)

Gọi \(AC \cap BD = O\)

Mà \(AC\subset (SAC)\), \(BD\subset (SBD)\) \(\Rightarrow O\in (SAC)\cap(SBD)\)

\(\Rightarrow  (SAC) \cap (SBD) = SO\).

LG b

\((SAB)\) và \((SCD)\)

Phương pháp giải:

Cách tìm giao tuyến của hai mặt phẳng lần lượt chứa hai đường thẳng \(d\) và \(d’\) song song với nhau:

- Tìm điểm chung của hai mặt phẳng

- Giao tuyến của hai mặt phẳng là đường thẳng đi qua điểm chung và song song với \(d\) và \(d’\).

Lời giải chi tiết:

Ta có: \(S\in (SAB)\cap(SCD)\)

Ta lại có:

\(\left\{ \begin{array}{l}AB \subset (SAB)\\CD \subset (SCD)\\AB\parallel CD\end{array} \right.\)

\(\Rightarrow (SAB)\cap (SCD)=Sx,\)

\(Sx\parallel AB\parallel CD\).

LG c

\((SAD)\) và \((SBC)\).

Phương pháp giải:

Cách tìm giao tuyến của hai mặt phẳng lần lượt chứa hai đường thẳng \(d\) và \(d’\) song song với nhau:

- Tìm điểm chung của hai mặt phẳng

- Giao tuyến của hai mặt phẳng là đường thẳng đi qua điểm chung và song song với \(d\) và \(d’\).

Lời giải chi tiết:

Ta có: \(S\in (SAD)\cap(SBC)\)

Ta lại có:

\(\left\{ \begin{array}{l}AD \subset (SAD)\\BC \subset (SBC)\\AD\parallel BC\end{array} \right.\)

\(\Rightarrow (SAD)\cap (SBC)=Sy,\)

\(Sy\parallel AD\parallel BC\).

soanvan.me