Lựa chọn câu để xem lời giải nhanh hơn

Khảo sát sự biến thiên và vẽ đồ thị của các hàm số sau:

LG a

\(y = {x^{ - 3}}\)

Phương pháp giải:

Ta tiến hành thực hiện theo 3 bước như sau:

B1: Tập xác định.

Tìm tập xác định của hàm số.

B2: Sự biến thiên.

- Xét chiều biến thiên của hàm số.

 . Tính đạo hàm \( y’\)

 . Tìm các điểm tại đó đạo hàm \(y’\) bằng \(0\) hoặc  không xác định.

 . Xét dấu đạo hàm \(y’ \) và suy ra chiều biến thiên của hàm số.

- Tìm cực trị.

- Tìm các giới hạn tại vô cực, các giới hạn vô cực và tìm tiệm cận (nếu có).

- Lập bảng biến thiên (ghi các kết quả tìm được vào bảng biến thiên).

B3: Đồ thị.

Dựa vào bảng biến thiên và các yếu tố xác định ở trên để vẽ đồ thị.

Giải chi tiết:

- Tập xác định: \(D = \mathbb{R}\backslash \left\{ 0 \right\}\).

- Hàm số đã cho là hàm số lẻ.

\(y' =  - 3{x^{ - 4}} =  - {3 \over {{x^4}}}\)

Ta có: \(y' < 0,\forall x \in R\backslash {\rm{\{ }}0\}\) nên hàm số luôn nghịch biến trên các khoảng xác định.

\(\mathop {\lim }\limits_{x \to  - \infty } y = \mathop {\lim }\limits_{x \to  + \infty } y = 0,\mathop {\lim}\limits_{x \to {0^ + }} y =  + \infty ,\mathop {\lim }\limits_{x \to {0^ - }} y =  - \infty \)

Đồ thị có tiệm cận ngang là trục hoành, tiệm cận đứng là trục tung.

- Bảng biến thiên:

Đồ thị của hàm số có tâm đối xứng là gốc tọa độ.

LG b

\(y = {x^{ - {1 \over 2}}}\)

Phương pháp giải:

Ta tiến hành thực hiện theo 3 bước như sau:

B1: Tập xác định.

Tìm tập xác định của hàm số.

B2: Sự biến thiên.

- Xét chiều biến thiên của hàm số.

 . Tính đạo hàm \( y’\)

 . Tìm các điểm tại đó đạo hàm \(y’\) bằng \(0\) hoặc  không xác định.

 . Xét dấu đạo hàm \(y’ \) và suy ra chiều biến thiên của hàm số.

- Tìm cực trị.

- Tìm các giới hạn tại vô cực, các giới hạn vô cực và tìm tiệm cận (nếu có).

- Lập bảng biến thiên (ghi các kết quả tìm được vào bảng biến thiên).

B3: Đồ thị.

Dựa vào bảng biến thiên và các yếu tố xác định ở trên để vẽ đồ thị.

Giải chi tiết:

Tập xác định: \(D = (0; + \infty )\); \(y' =  - {1 \over 2}{x^{ - {3 \over 2}}}\)

Vì \(y'<0,\forall x\in D\) nên hàm số nghịch biến.

  \(\mathop {\lim }\limits_{x \to {0^ + }} y =  + \infty ,\mathop {\lim }\limits_{x \to  + \infty } y = 0\)

Đồ thị có tiệm cận đứng là trục tung, tiệm cận ngang là trục hoành.

Bảng biến thiên:

Đồ thị:

LG c

\(y = {x^{{\pi  \over 4}}}\)

Phương pháp giải:

Ta tiến hành thực hiện theo 3 bước như sau:

B1: Tập xác định.

Tìm tập xác định của hàm số.

B2: Sự biến thiên.

- Xét chiều biến thiên của hàm số.

 . Tính đạo hàm \( y’\)

 . Tìm các điểm tại đó đạo hàm \(y’\) bằng \(0\) hoặc  không xác định.

 . Xét dấu đạo hàm \(y’ \) và suy ra chiều biến thiên của hàm số.

- Tìm cực trị.

- Tìm các giới hạn tại vô cực, các giới hạn vô cực và tìm tiệm cận (nếu có).

- Lập bảng biến thiên (ghi các kết quả tìm được vào bảng biến thiên).

B3: Đồ thị.

Dựa vào bảng biến thiên và các yếu tố xác định ở trên để vẽ đồ thị.

Giải chi tiết:

Tập xác định: \(D = (0; + \infty )\); \(y' = \dfrac{\pi }{4}{x^{\frac{\pi }{4} - 1}}\)

Vì \(y' > 0,\forall x \in D\) nên hàm số đòng biến trên \(D\).

\(\mathop {\lim }\limits_{x \to {0^ + }} y = 0,\mathop {\lim }\limits_{x \to  + \infty } y =  + \infty \)

Đồ thị không có tiệm cận.

Bảng biến thiên:

Đồ thị:

soanvan.me