Đề bài

Nếu hai vòi nước cùng chảy vào một bể cạn (không có nước) thì bể sẽ đầy trong 1 giờ 20 phút. Nếu mở vòi thứ nhất trong 10 phút và vòi thứ hai trong 12 phút thì chỉ được \(\dfrac{2}{{15}}\) bể nước. Hỏi nếu mở riêng từng vòi thì thời gian mỗi vòi chảy đầy bể là bao nhiêu ? 

Phương pháp giải - Xem chi tiết

Bước 1. Lập hệ phương trình:

- Chọn các ẩn số và đặt điều kiện thích hợp cho các ẩn số;

- Biểu diễn các đại lượng chưa biết theo các ẩn và các đại lượng đã biết;

- Lập hệ phương trình biểu thị mối quan hệ giữa các đại lượng

Bước 2. Giải hệ phương trình vừa thu được.

Bước 3. Kết luận

- Kiểm tra xem trong các nghiệm của hệ phương trình, nghiệm nào thỏa mãn điều kiện của ẩn.

- Kết luận bài toán.

Lời giải chi tiết

Giar sử khi chảy riêng  vòi thứ nhất chảy đầy bể trong \(x\) (phút) và vòi thứ hai chảy đầy bể trong \(y\) (phút). Điều kiện là: \(x;y > 80\).

Vòi thứ nhất chảy một mình trong 1 phút được \(\dfrac{1}{x}\) bể 

Vòi thứ hai chảy một mình trong 1 phút được \(\dfrac{1}{y}\) bể

Nên hai vòi cùng chảy trong 1 phút được \(\dfrac{1}{x} + \dfrac{1}{y}\) (bể)

Vì hai vòi cũng chảy vào bể cạn thì sau \(1\) giờ 20 phút \( = 80\) phút thì đầy bể nên ta có phương trình

\(\dfrac{1}{x} + \dfrac{1}{y} = \dfrac{1}{{80}}\)   (1)

Từ giả thiết mở vòi thứ nhất trong 10 phút và mở  vòi thứ hai trong 12  phút thì được \(\dfrac{2}{{15}}\) bể nước nên ta có phương trình  \(10.\dfrac{1}{x} + 12.\dfrac{1}{y} = \dfrac{2}{{15}}\)  (2)

Từ (1) và (2) ta có hệ phương trình \(\left\{ \begin{array}{l}\dfrac{1}{x} + \dfrac{1}{y} = \dfrac{1}{{80}}\\10.\dfrac{1}{x} + 12.\dfrac{1}{y} = \dfrac{2}{{15}}\end{array} \right.\)

Đặt \(\dfrac{1}{x} = u;\dfrac{1}{y} = v\) ta có hệ

\(\left\{ \begin{array}{l}u + v = \dfrac{1}{{80}}\\10u + 12v = \dfrac{2}{{15}}\end{array} \right. \\\Leftrightarrow \left\{ \begin{array}{l}u = \dfrac{1}{{80}} - v\\10\left( {\dfrac{1}{{80}} - v} \right) + 12v = \dfrac{2}{{15}}\end{array} \right. \\\Leftrightarrow \left\{ \begin{array}{l}u = \dfrac{1}{{80}} - v\\\dfrac{1}{8} - 10v + 12v = \dfrac{2}{{15}}\end{array} \right. \\\Leftrightarrow \left\{ \begin{array}{l}u = \dfrac{1}{{80}} - v\\2v = \dfrac{1}{{120}}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}v = \dfrac{1}{{240}}\\u = \dfrac{1}{{120}}\end{array} \right.\,\left( {\,thỏa\, mãn} \right)\)

Thay về cách đặt, ta được

\(x=\dfrac{1}{u} = 120 (\,thỏa\, mãn)\) và \({y} = \dfrac{1}{v}=240 (\,thỏa\, mãn)\) 

Vậy vòi thứ nhất chảy riêng trong \(120\) phút thì đầy bể, vòi thứ hai chảy riêng trong \(240\) phút thì đầy bể.

Chú ý:

Một số em không đổi đúng đơn vị thời gian dẫn đến không ra đáp án.

soanvan.me