Đề bài

Nếu hiệu điện thế giữa hai cực của một ống Cu-lít-giơ bị giảm \(2000V\) thì tốc độ của các êlectron tới anôt giảm \(5200km/s.\) Hãy tính hiệu điện thế của ống và tốc độ của các êlectron.

Phương pháp giải - Xem chi tiết

Sử dụng công thức \({{\rm{W}}_d} = \dfrac{1}{2}m{v^2} = \left| e \right|U\)

Lời giải chi tiết

Ta có

+ \(\dfrac{1}{2}m{v^2} = \left| e \right|U \Rightarrow {v^2} = \dfrac{{2\left| e \right|U}}{m}(1)\)

+\(\begin{array}{l}\dfrac{1}{2}m{(v - \Delta v)^2} = \left| e \right|(U - \Delta U)\\ \Leftrightarrow {v^2} - 2v\Delta v + {(\Delta v)^2}\\ = \dfrac{{2\left| e \right|U}}{m} - \dfrac{{2\left| e \right|\Delta U}}{m}(2)\end{array}\)

Từ (1)(2) \( \Rightarrow v = \dfrac{{\Delta v}}{2} + \dfrac{{\left| e \right|\Delta U}}{{m\Delta v}} \\= \dfrac{{5,{{2.10}^6}}}{2} + \dfrac{{\left| { - 1,{{6.10}^{ - 19}}} \right|.2000}}{{9,{{1.10}^{ - 31}}.5,{{2.10}^6}}} \\= 7,{02.10^7}m/s\)

Hiệu điện thế \(U = \dfrac{{\dfrac{1}{2}m{v^2}}}{{\left| e \right|}} \\= \dfrac{{\dfrac{1}{2}.9,{{1.10}^{ - 31}}{{(7,{{02.10}^7})}^2}}}{{\left| { - 1,{{6.10}^{ - 19}}} \right|}} = 14024V\)