Đề bài
Trong mặt phẳng, cho hai đường thẳng song song a và b. Cho 3 điểm phân biệt trên đường thẳng a và 4 điểm phân biệt trên đường thẳng b. Có bao nhiêu tam giác có cả 3 đỉnh là 3 điểm trong 7 điểm nói trên?
Phương pháp giải - Xem chi tiết
Một tam giác được tạo nên bởi 3 điểm không thẳng hàng, do đó để có một tam giác ta sẽ chọn ra 3 điểm không thằng hàng trong 7 điểm đã cho.
Cách 1:
Lấy 2 điểm thuộc a, 1 điểm thuộc b và ngược lại
Cách 2:
Tính số cách chọn 3 điểm bất kì trong 7 điểm – số cách chọn 3 điểm thẳng hàng thuộc a và b.
Lời giải chi tiết
Cách 1:
TH1: 2 điểm thuộc a và 1 điểm thuộc b
Số cách chọn 2 điểm thuộc đường thẳng a là \(C_3^2\) (cách chọn)
Số cách chọn 1 điểm thuộc đường thẳng b là: \(C_4^1\) (cách chọn)
=> Số tam giác tạo thành là: \(C_3^2 . C_4^1 = 12\)
TH2: 2 điểm thuộc b và 1 điểm thuộc a
Số cách chọn 2 điểm thuộc đường thẳng b là \(C_4^2\) (cách chọn)
Số cách chọn 1 điểm thuộc đường thẳng a là: \(C_3^1\) (cách chọn)
=> Số tam giác tạo thành là: \(C_4^2 + C_3^1 = 18\)
Vậy có tất cả 12 + 18 = 30 tam giác.
Cách 2:
Số cách chọn 3 điểm thuộc đường thẳng a là: \(C_3^3\) (cách chọn)
Số cách chọn 3 điểm thuộc đường thẳng b là: \(C_4^3\) (cách chọn)
Số cách chọn 3 điểm bất kì trong 7 điểm đã cho là: \(C_7^3\) (cách chọn)
Số cách chọn 3 điểm không thẳng hàng trong 7 điểm đã cho là: \(C_7^3 - C_4^3 - C_3^3 = 30\) (cách chọn)
Vậy số tam giác có thể có là : 30 (tam giác)