Đề bài

Hãy chỉ ra kết quả sai khi tính \(\int {\sin x\cos xdx} \):

A. \(\dfrac{{{{\sin }^2}x}}{2} + C\)            B. \( - \dfrac{{{{\cos }^2}x}}{2} + C\)

C. \(\dfrac{{ - \cos 2x}}{4} + C\)      D. \(\dfrac{{{{\cos }^2}x}}{2} + C\)

Phương pháp giải - Xem chi tiết

Tìm một nguyên hàm của \(\sin x\cos x\) rồi nhận xét các đáp án còn lại.

Sử dụng định lý: Nếu \(F\left( x \right)\) là một nguyên hàm của \(f\left( x \right)\) thì \(F\left( x \right) + C\) với \(C\) là một số thực tùy ý cũng là một nguyên hàm của \(f\left( x \right)\).

Lời giải chi tiết

\(\int {\sin x\cos xdx} \)\( = \int {\sin xd\left( {\sin x} \right)} \) \( = \dfrac{{{{\sin }^2}x}}{2} + C\).

Do đó  A đúng hay \(F\left( x \right) = \dfrac{{{{\sin }^2}x}}{2} + C\) là một nguyên hàm của \(f\left( x \right) = \sin x\cos x\).

Lại có \( - \dfrac{{{{\cos }^2}x}}{2} + C =  - \dfrac{{1 - {{\sin }^2}x}}{2} + C\)\( = \dfrac{{{{\sin }^2}x}}{2} - \dfrac{1}{2} + C\)  nên \( - \dfrac{{{{\cos }^2}x}}{2} + C\) cũng là một nguyên hàm của \(f\left( x \right)\).

Ta có: \(\dfrac{{ - \cos 2x}}{4} + C\)\( = \dfrac{{ - \left( {1 - 2{{\sin }^2}x} \right)}}{4} + C\) \( =  - \dfrac{1}{4} + \dfrac{{{{\sin }^2}x}}{2} + C\) cũng là một nguyên hàm của \(f\left( x \right)\).

Do đó A, B, C đúng.

Chọn D.

soanvan.me