Lựa chọn câu để xem lời giải nhanh hơn

Trong các cặp hình phẳng giới hạn bởi các đường sau, cặp nào có diện tích bằng nhau?

LG a

\(\displaystyle  {\rm{\{ }}y = x + \sin x,y = x\)  với \(\displaystyle  0 \le x \le \pi {\rm{\} }}\) và \(\displaystyle  {\rm{\{ }}y = x + \sin x,y = x\)  với \(\displaystyle  \pi  \le x \le 2\pi {\rm{\} }}\)

Phương pháp giải:

Tính diện tích mỗi cặp hình phẳng đã cho và suy ra kết luận.

Giải chi tiết:

Ta có: \(\displaystyle  x + \sin x = x \Leftrightarrow \sin x = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = \pi \end{array} \right.\)

Khi đó \(\displaystyle  {S_1} = \int\limits_0^\pi  {\left| {x + \sin x - x} \right|dx} \) \(\displaystyle   = \int\limits_0^\pi  {\left| {\sin x} \right|dx} \) \(\displaystyle   = \int\limits_0^\pi  {\sin xdx}  =  - \left. {\cos x} \right|_0^\pi \) \(\displaystyle   =  - \cos \pi  + \cos 0 = 1 + 1 = 2\)

\(\displaystyle  {S_2} = \int\limits_\pi ^{2\pi } {\left| {x + \sin x - x} \right|dx} \) \(\displaystyle   = \int\limits_\pi ^{2\pi } {\left| {\sin x} \right|dx} \) \(\displaystyle   = \int\limits_\pi ^{2\pi } {\left( { - \sin x} \right)dx}  = \left. {\cos x} \right|_\pi ^{2\pi }\) \(\displaystyle   = \cos 2\pi  - \cos \pi  = 1 + 1 = 2\)

Do đó \(\displaystyle  {S_1} = {S_2}\).

LG b

\(\displaystyle  \;{\rm{\{ }}y = \sin x,y = 0\) với \(\displaystyle  0 \le x \le \pi {\rm{\} }}\) và \(\displaystyle  {\rm{\{ }}y = \cos x,y = 0\)  với \(\displaystyle  0 \le x \le \pi {\rm{\} }}\);

Phương pháp giải:

Tính diện tích mỗi cặp hình phẳng đã cho và suy ra kết luận.

Giải chi tiết:

\(\displaystyle  {S_1} = \int\limits_0^\pi  {\left| {\sin x} \right|dx}  = \int\limits_0^\pi  {\sin xdx} \) \(\displaystyle   =  - \left. {\cos x} \right|_0^\pi \)\(\displaystyle   =  - \cos \pi  + \cos 0 = 1 + 1 = 2\)

\(\displaystyle  {S_2} = \int\limits_0^\pi  {\left| {\cos x} \right|dx} \) \(\displaystyle   = \int\limits_0^{\frac{\pi }{2}} {\left| {\cos x} \right|dx}  + \int\limits_{\frac{\pi }{2}}^\pi  {\left| {\cos x} \right|dx} \) \(\displaystyle   = \int\limits_0^{\frac{\pi }{2}} {\cos xdx}  - \int\limits_{\frac{\pi }{2}}^\pi  {\cos xdx} \) \(\displaystyle   = \left. {\sin x} \right|_0^{\frac{\pi }{2}} - \left. {\sin x} \right|_{\frac{\pi }{2}}^\pi \)

\(\displaystyle   = \sin \frac{\pi }{2} - \sin 0 - \sin \pi  + \sin \frac{\pi }{2}\) \(\displaystyle   = 1 - 0 - 0 + 1 = 2\)

Do đó \(\displaystyle  {S_1} = {S_2}\).

LG c

\(\displaystyle  {\rm{\{ }}y = \sqrt x ,y = {x^2}{\rm{\} }}\) và \(\displaystyle  {\rm{\{ }}y = \sqrt {1 - {x^2}} ,y = 1 - x{\rm{\} }}\)

Phương pháp giải:

Tính diện tích mỗi cặp hình phẳng đã cho và suy ra kết luận.

Giải chi tiết:

Ta có: \(\displaystyle  \sqrt x  = {x^2} \Leftrightarrow \left\{ \begin{array}{l}x \ge 0\\x = {x^4}\end{array} \right.\) \(\displaystyle   \Leftrightarrow \left\{ \begin{array}{l}x \ge 0\\x\left( {{x^3} - 1} \right) = 0\end{array} \right.\) \(\displaystyle  \left[ \begin{array}{l}x = 0\\x = 1\end{array} \right.\)

Khi đó \(\displaystyle  {S_1} = \int\limits_0^1 {\left| {\sqrt x  - {x^2}} \right|dx} \) \(\displaystyle   = \left| {\int\limits_0^1 {\left( {\sqrt x  - {x^2}} \right)dx} } \right|\) \(\displaystyle   = \left| {\left. {\left( {\frac{2}{3}{x^{\frac{3}{2}}} - \frac{{{x^3}}}{3}} \right)} \right|_0^1} \right| = \left| {\frac{2}{3} - \frac{1}{3}} \right| = \frac{1}{3}\)

\(\displaystyle  \sqrt {1 - {x^2}}  = 1 - x\) \(\displaystyle   \Leftrightarrow \left\{ \begin{array}{l}1 - x \ge 0\\1 - {x^2} = {\left( {1 - x} \right)^2}\end{array} \right.\) \(\displaystyle   \Leftrightarrow \left\{ \begin{array}{l}x \le 1\\1 - {x^2} = 1 - 2x + {x^2}\end{array} \right.\)

\(\displaystyle   \Leftrightarrow \left\{ \begin{array}{l}x \le 1\\2{x^2} - 2x = 0\end{array} \right.\) \(\displaystyle   \Leftrightarrow \left\{ \begin{array}{l}x \le 1\\\left[ \begin{array}{l}x = 0\\x = 1\end{array} \right.\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = 1\end{array} \right.\)

Khi đó \(\displaystyle  {S_2} = \int\limits_0^1 {\left| {\sqrt {1 - {x^2}}  - \left( {1 - x} \right)} \right|dx} \) \(\displaystyle   = \int\limits_0^1 {\left| {\sqrt {1 - {x^2}}  - 1 + x} \right|dx} \) \(\displaystyle   = \left| {\int\limits_0^1 {\left( {\sqrt {1 - {x^2}}  - 1 + x} \right)dx} } \right|\)

\(\displaystyle   = \left| {\int\limits_0^1 {\sqrt {1 - {x^2}} dx}  - \int\limits_0^1 {dx}  + \int\limits_0^1 {xdx} } \right|\) \(\displaystyle   = \left| {\int\limits_0^1 {\sqrt {1 - {x^2}} dx}  - 1 + \frac{1}{2}} \right|\) \(\displaystyle   = \left| {I - \frac{1}{2}} \right|\)

Tính \(\displaystyle  I = \int\limits_0^1 {\sqrt {1 - {x^2}} dx} \).

Đặt \(\displaystyle  x = \sin t \Rightarrow dx = \cos tdt\) \(\displaystyle   \Rightarrow I = \int\limits_0^{\frac{\pi }{2}} {\sqrt {1 - {{\sin }^2}t} .\cos tdt} \) \(\displaystyle   = \int\limits_0^{\frac{\pi }{2}} {{{\cos }^2}tdt} \)

\(\displaystyle   = \frac{1}{2}\int\limits_0^{\frac{\pi }{2}} {\left( {1 + \cos 2t} \right)dt} \) \(\displaystyle   = \frac{1}{2}\left. {\left( {t + \frac{{\sin 2t}}{2}} \right)} \right|_0^{\frac{\pi }{2}}\) \(\displaystyle   = \frac{1}{2}.\frac{\pi }{2} = \frac{\pi }{4}\)

Do đó \(\displaystyle  {S_1} \ne {S_2}\).

soanvan.me