Thực hiện phép tính ( chú ý đến quy tắc đổi dấu)
LG a
\(\displaystyle{{4\left( {x + 3} \right)} \over {3{x^2} - x}}:{{{x^2} + 3x} \over {1 - 3x}}\)
Phương pháp giải:
Muốn chia phân thức \( \dfrac{A}{B}\) cho phân thức \( \dfrac{C}{D}\) khác \(0\), ta nhân \( \dfrac{A}{B}\) với phân thức nghịch đảo của \( \dfrac{C}{D}\)
\( \dfrac{A}{B} : \dfrac{C}{D} = \dfrac{A}{B}. \dfrac{D}{C}\) với \( \dfrac{C}{D} ≠ 0\).
Lời giải chi tiết:
\(\displaystyle{{4\left( {x + 3} \right)} \over {3{x^2} - x}}:{{{x^2} + 3x} \over {1 - 3x}}\)\(\displaystyle = {{4\left( {x + 3} \right)} \over {3{x^2} - x}}.{{1 - 3x} \over {{x^2} + 3x}} \)
\(\displaystyle= {{4\left( {x + 3} \right)\left( {1 - 3x} \right)} \over {x\left( {3x - 1} \right).x\left( {x + 3} \right)}} \)\(\displaystyle= {{ - 4\left( {3x - 1} \right)} \over {{x^2}\left( {3x - 1} \right)}} = - {4 \over {{x^2}}}\)
LG b
\(\displaystyle{{4x + 6y} \over {x - 1}}:{{4{x^2} + 12xy + 9{y^2}} \over {1 - {x^3}}}\)
Phương pháp giải:
Muốn chia phân thức \( \dfrac{A}{B}\) cho phân thức \( \dfrac{C}{D}\) khác \(0\), ta nhân \( \dfrac{A}{B}\) với phân thức nghịch đảo của \( \dfrac{C}{D}\)
\( \dfrac{A}{B} : \dfrac{C}{D} = \dfrac{A}{B}. \dfrac{D}{C}\) với \( \dfrac{C}{D} ≠ 0\).
Lời giải chi tiết:
\(\displaystyle{{4x + 6y} \over {x - 1}}:{{4{x^2} + 12xy + 9{y^2}} \over {1 - {x^3}}} \)\(\displaystyle = {{4x + 6y} \over {x - 1}}.{{1 - {x^3}} \over {4{x^2} + 12xy + 9{y^2}}} \)
\(\displaystyle = {{(4x + 6y).(1 - {x^3})} \over {(x - 1).(4{x^2} + 12xy + 9{y^2})}}\)
\(\displaystyle= {{2\left( {2x + 3y} \right)\left( {1 - x} \right)\left( {1 + x + {x^2}} \right)} \over {\left( {x - 1} \right){{\left( {2x + 3y} \right)}^2}}}\)
\(\displaystyle = - {{2\left( {x - 1} \right)\left( {1 + x + {x^2}} \right)} \over {\left( {x - 1} \right)\left( {2x + 3y} \right)}} \)\(\displaystyle= - {{2\left( {1 + x + {x^2}} \right)} \over {2x + 3y}}\)
soanvan.me