Đề bài
Kiểm tra xem trong các số – 1, 0, 1, 2, số nào là nghiệm của mỗi đa thức sau:
a) \(3x - 6\); b) \({x^4} - 1\);
c) \(3{x^2} - 4x\); d) \({x^2} + 9\).
Phương pháp giải - Xem chi tiết
Muốn kiểm tra xem số nào là nghiệm của đa thức nào, ta thay các giá trị nghiệm vào biểu thức. Nếu giá trị biểu thức bằng 0 thì đó là nghiệm của đa thức. Nếu giá trị biểu thức khác 0 thì đó không là nghiệm của đa thức.
Lời giải chi tiết
a) Thay các giá trị – 1, 0, 1, 2 vào biểu thức ta được:
\(\begin{array}{l}3.( - 1) - 6 = - 3 - 6 = - 9\\3.0 - 6 = 0 - 6 = - 6\\3.1 - 6 = 3 - 6 = - 3\\3.2 - 6 = 6 - 6 = 0\end{array}\)
Vậy 2 là nghiệm của đa thức \(3x - 6\).
b) Thay các giá trị – 1, 0, 1, 2 vào biểu thức ta được:
\(\begin{array}{l}{( - 1)^4} - 1 = 1 - 1 = 0\\{0^4} - 1 = 0 - 1 = - 1\\{1^4} - 1 = 1 - 1 = 0\\{2^4} - 1 = 16 - 1 = 15\end{array}\)
Vậy 1 và – 1 là nghiệm của đa thức \({x^4} - 1\)
c) Thay các giá trị – 1, 0, 1, 2 vào biểu thức ta được:
\(\begin{array}{l}3.{( - 1)^2} - 4.( - 1) = 3 + 4 = 7\\{3.0^2} - 4.0 = 0 - 0 = 0\\{3.1^2} - 4.1 = 3 - 4 = - 1\\{3.2^2} - 4.2 = 12 - 8 = 4\end{array}\)
Vậy 0 là nghiệm của đa thức \(3{x^2} - 4x\).
d) Thay các giá trị – 1, 0, 1, 2 vào biểu thức ta được:
\(\begin{array}{l}{( - 1)^2} + 9 = 1 + 9 = 10\\{0^2} + 9 = 0 + 9 = 9\\{1^2} + 9 = 1 + 9 = 10\\{2^2} + 9 = 4 + 9 = 13\end{array}\)
Vậy không giá trị nào là nghiệm của đa thức \({x^2} + 9\).