Lựa chọn câu để xem lời giải nhanh hơn

Chứng minh các phương trình sau luôn có nghiệm với mọi giá trị của tham số m :

LG a

\(\left( {1 - {m^2}} \right){\left( {x + 1} \right)^3} + {x^2} - x - 3 = 0\)

Phương pháp giải:

Hàm số \(y = f\left( x \right)\) xác định và liên tục trên \(\left( {a;b} \right)\). Nếu \(f\left( a \right).f\left( b \right) < 0\) thì tồn tại ít nhất một số \(c \in \left( {a;b} \right)\) sao cho \(f\left( c \right) = 0\)

Lời giải chi tiết:

\(\left( {1 - {m^2}} \right){\left( {x + 1} \right)^3} + {x^2} - x - 3 = 0\)    

\(f\left( x \right) = \left( {1 - {m^2}} \right){\left( {x + 1} \right)^3} + {x^2} - x - 3\) là hàm đa thức liên tục trên R. Do đó nó liên tục trên [-2; -1]

Ta có \(f\left( { - 1} \right) =  - 1 < 0\) và \(f\left( { - 2} \right) = {m^2} + 2 > 0\) nên \(f\left( { - 1} \right)f\left( { - 2} \right) < 0\) với mọi m.

Do đó, phương trình \(f\left( x \right) = 0\) luôn có ít nhất một nghiệm trong khoảng (-2; -1) với mọi m.

Nghĩa là, phương trình \(\left( {1 - {m^2}} \right){\left( {x + 1} \right)^3} + {x^2} - x - 3 = 0\) luôn có nghiệm với mọi m.

LG b

\(m\left( {2\cos x - \sqrt 2 } \right) = 2\sin 5x + 1\)

Phương pháp giải:

Hàm số \(y = f\left( x \right)\) xác định và liên tục trên \(\left( {a;b} \right)\). Nếu \(f\left( a \right).f\left( b \right) < 0\) thì tồn tại ít nhất một số \(c \in \left( {a;b} \right)\) sao cho \(f\left( c \right) = 0\).

Lời giải chi tiết:

\(m\left( {2\cos x - \sqrt 2 } \right) = 2\sin 5x + 1\)    

Xét hàm số \(f\left( x \right) = m\left( {2\cos x - \sqrt 2 } \right) - 2\sin 5x - 1\) trên đoạn \(\left[ { - {\pi  \over 4};{\pi  \over 4}} \right]\).

Hàm số \(f\left( x \right) = m\left( {2\cos x - \sqrt 2 } \right) - 2\sin 5x - 1\) là hàm số lượng giác có TXĐ \(D = \mathbb{R}\) nên liên tục trên TXĐ \(\mathbb{R}\) nên cũng liên tục trên \(\left[ { - \dfrac{\pi }{4};\dfrac{\pi }{4}} \right]\)

Ta có:

\(f\left( { - \dfrac{\pi }{4}} \right)\) \( = m\left( {2\cos \left( { - \dfrac{\pi }{4}} \right) - \sqrt 2 } \right) - 2\sin \left( { - \dfrac{{5\pi }}{4}} \right) - 1\) \( =  - 1 - \sqrt 2  < 0\)

\(f\left( {\dfrac{\pi }{4}} \right)\) \( = m\left( {2\cos \left( {\dfrac{\pi }{4}} \right) - \sqrt 2 } \right) - 2\sin \left( {\dfrac{{5\pi }}{4}} \right) - 1\)\( =  - 1 + \sqrt 2  > 0\)

\( \Rightarrow f\left( { - \dfrac{\pi }{4}} \right).f\left( {\dfrac{\pi }{4}} \right) < 0\)

Vậy phương trình \(f\left( x \right) = 0\) có ít nhất một nghiệm trong khoảng \(\left( { - \dfrac{\pi }{4};\dfrac{\pi }{4}} \right)\) với mọi \(m\).

soanvan.me