Đề bài

Doanh nghiệp A chọn ngẫu nhiên 2 tháng trong năm 2020 để tri ân khách hàng. Doanh nghiệp B cũng chọn ngẫu nhiên 1 tháng trong năm đó để tri ân khách hàng. Tính xác suất của biến cố “Hai doanh nghiệp tri ân khách hàng cùng một tháng trong năm”

Phương pháp giải - Xem chi tiết

Xác suất của biến cố A là một số, kí hiệu \(P\left( A \right)\) được xác định bởi công thức: \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega  \right)}}\), trong đó \(n\left( A \right)\) và \(n\left( \Omega  \right)\) lần lượt là kí hiệu số phần tử của tập A và \(\Omega \)

Biến cố đối của biến cố A là biến cố không xảy ra A, kí hiệu là \(\overline A \) và \(P\left( {\overline A } \right) + P\left( A \right) = 1\)

Lời giải chi tiết

+ Hai doanh nghiệp chọn tháng để tri ân khách hàng cần 2 công đoạn

Công đoạn 1: Doanh nghiệp A chọn 2 tháng trong năm, có \(C_{12}^2\) cách

Công đoạn 2: Doanh nghiệp B chọn 1 tháng trong năm, có \(C_{12}^1\) cách

\( \Rightarrow \)\(n\left( \Omega  \right) = C_{12}^2.C_{12}^1\)

+ \(\overline A :\) “Hai doanh nghiệp tri ân khách hàng khác tháng trong năm”

Công đoạn 1: Doanh nghiệp A chọn 2 tháng trong năm, có \(C_{12}^2\) cách

Công đoạn 2: Doanh nghiệp B chọn 1 tháng trong năm, khác với 2 tháng mà doanh nghiệp A chọn có \(10\) cách

\( \Rightarrow \)\(n\left( {\overline A } \right) = C_{12}^2.10\)

Xác suất để hai doanh nghiệp tri ân khách hàng khác tháng trong năm là: \( \Rightarrow P\left( {\overline A } \right) = \frac{{n\left( {\overline A } \right)}}{{n\left( \Omega  \right)}} = \frac{{C_{12}^2.10}}{{C_{12}^2.C_{12}^1}} = \frac{5}{6}\)

Xác suất để hai doanh nghiệp tri ân khách hàng cùng một tháng trong năm là:

\(P(A) = 1 - P\left( {\overline A } \right) = 1 - \frac{5}{6} = \frac{1}{6}\)