Đề bài

Chứng minh rằng \(C_5^0 - C_5^1 + C_5^2 - C_5^3 + C_5^4 - C_5^5 = 0\)

Phương pháp giải - Xem chi tiết

Sử dụng công thức nhị thức Newton

Hoặc \(C_n^k = C_n^{n - k}\)

Lời giải chi tiết

\(\begin{array}{l}C_5^0 - C_5^1 + C_5^2 - C_5^3 + C_5^4 - C_5^5\\ = C_5^0{.1^5} - C_5^1{.1^4}.1 + C_5^2{.1^3}{.1^2} - C_5^3{.1^2}{.1^3} + C_5^4{.1.1^4} - C_5^5{.1^5}\\ = {\left( {1 - 1} \right)^5} = {0^5}\\ = 0\end{array}\)

Vậy ta có điều phải chứng minh

Cách 2:

Ta có: \(C_5^0 = C_5^{5 - 0} = C_5^5\)

Tương tự: \(C_5^1 = C_5^{5 - 1} = C_5^4;\;C_5^2 = C_5^{5 - 2} = C_5^3;\)

\(\Rightarrow C_5^0 - C_5^1 + C_5^2 - C_5^3 + C_5^4 - C_5^5 = \left( {C_5^0 - C_5^5} \right) + \left( {C_5^4 - C_5^1} \right) + \left( {C_5^2 - C_5^3} \right) = 0\) (đpcm)