Đề bài

Tìm đạo hàm cấp hai của hàm số sau:

\(y = {{2x + 1} \over {{x^2} + x - 2}}.\)

Phương pháp giải - Xem chi tiết

Tính đạo hàm cấp 1 rồi tính tiếp đạo hàm cấp 2 của hàm số.

Lời giải chi tiết

\(y = {{2x + 1} \over {{x^2} + x - 2}} = {1 \over {x - 1}} + {1 \over {x + 2}},\) do đó:

\(\begin{array}{l}
y' = \dfrac{{ - \left( {x - 1} \right)'}}{{{{\left( {x - 1} \right)}^2}}} + \dfrac{{ - \left( {x + 2} \right)'}}{{{{\left( {x + 2} \right)}^2}}}\\
= - \dfrac{1}{{{{\left( {x - 1} \right)}^2}}} - \dfrac{1}{{{{\left( {x + 2} \right)}^2}}}\\
y'' = - \dfrac{{ - \left[ {{{\left( {x - 1} \right)}^2}} \right]'}}{{{{\left( {x - 1} \right)}^4}}} - \dfrac{{ - \left[ {{{\left( {x + 2} \right)}^2}} \right]'}}{{{{\left( {x + 2} \right)}^4}}}\\
= \dfrac{{2\left( {x - 1} \right)\left( {x - 1} \right)'}}{{{{\left( {x - 1} \right)}^4}}} + \dfrac{{2\left( {x + 2} \right)\left( {x + 2} \right)'}}{{{{\left( {x + 2} \right)}^4}}}\\
= \dfrac{2}{{{{\left( {x - 1} \right)}^3}}} + \dfrac{2}{{{{\left( {x + 2} \right)}^3}}}\\
= 2\left( {\dfrac{1}{{{{\left( {x - 1} \right)}^3}}} + \dfrac{1}{{{{\left( {x + 2} \right)}^3}}}} \right)
\end{array}\)

 soanvan.me