Đề bài
Tìm số x trong các tỉ lệ thức sau:
\(\begin{array}{l}a)\frac{x}{{ - 3}} = \frac{7}{{0,75}};\\b) - 0,52:x = \sqrt {1,96} :( - 1,5);\\c)x:\sqrt 5 = \sqrt 5 :x\end{array}\)
Phương pháp giải - Xem chi tiết
Sử dụng tính chất của tỉ lệ thức: \(\frac{a}{b} = \frac{c}{d} \Rightarrow a.d = b.c\)
Lời giải chi tiết
\(\begin{array}{l}a)\frac{x}{{ - 3}} = \frac{7}{{0,75}}\\ \Rightarrow x.0,75 = ( - 3).7\\ \Rightarrow x = \frac{{( - 3).7}}{{0,75}} = - 28\end{array}\)
Vậy x = 28
\(\begin{array}{l}b) - 0,52:x = \sqrt {1,96} :( - 1,5)\\ - 0,52:x = 1,4:( - 1,5)\\ x = \dfrac{(-0,52).(-1,5)}{1,4}\\x = \frac{39}{{70}}\end{array}\)
Vậy x = \(\frac{39}{{70}}\)
\(\begin{array}{l}c)x:\sqrt 5 = \sqrt 5 :x\\ \Leftrightarrow \frac{x}{{\sqrt 5 }} = \frac{{\sqrt 5 }}{x}\\ \Rightarrow x.x = \sqrt 5 .\sqrt 5 \\ \Leftrightarrow {x^2} = 5\\ \Leftrightarrow \left[ {_{x = - \sqrt 5 }^{x = \sqrt 5 }} \right.\end{array}\)
Vậy x \( \in \{ \sqrt 5 ; - \sqrt 5 \} \)
Chú ý:
Nếu \({x^2} = a(a > 0)\) thì x = \(\sqrt a \) hoặc x = -\(\sqrt a \)