Đề bài
Cho hai điểm \(A,B\) và đường tròn tâm \(O\) không có điểm chung với đường thẳng \(AB\). Qua mỗi điểm \(M\) chạy trên đường tròn \((O)\) dựng hình bình hành \(MABN\). Chứng minh rằng: điểm \(N\) thuộc một đường tròn xác định.
Video hướng dẫn giải
Phương pháp giải - Xem chi tiết
+) Chứng minh \(N\) là ảnh của \(M\) qua phép tinh tiến theo vecto \((\overrightarrow {AB})\) cố định.
+) Xác định ảnh của \(M\) khi \(M\) chạy trên \((O)\). Tức là tìm ảnh của \((O)\) qua phép tịnh tiến.
Lời giải chi tiết
Vì \(MABN\) là hình bình hành nên \( \overrightarrow {MN}=\overrightarrow {AB}\) không đổi.
\( \Rightarrow {T_{\overrightarrow {AB} }}\left( M \right) = N\).
Gọi \((O',R)\) là ảnh của \((O,R)\) qua phép tịnh tiến theo \(\overrightarrow {AB}\), cố định.
Vì \(M \in (O)\) nên \(N= {T_{\overrightarrow {AB} }}\left( M \right) \in {T_{\overrightarrow {AB} }}\left( (O) \right) = (O')\)
Vậy \(N \in (O')\) (đpcm).
soanvan.me