Lựa chọn câu để xem lời giải nhanh hơn

Trong không gian tọa độ Oxyz cho hai mặt phẳng

\(\eqalign{  & (\alpha ):2x - y + 3z + 1 = 0,  \cr  & (\alpha '):x - y + z + 5 = 0 \cr} \)

Và điểm M(1; 5; 0).

LG a

Chứng minh \((\alpha )\) và \((\alpha ')\) cắt nhau. Tính góc giữa\((\alpha )\) và \((\alpha ')\).

Lời giải chi tiết:

Vì \(\overrightarrow {{n_\alpha }}  = {\rm{ }}\left( {2{\rm{ }};{\rm{ }} - 1{\rm{ }};{\rm{ }}3} \right),\overrightarrow {{n_{\alpha '}}}  = {\rm{ }}\left( {1{\rm{ }};{\rm{ }} - 1{\rm{ }};{\rm{ }}1} \right)\) nên \(\overrightarrow {{n_\alpha }} \) và \(\overrightarrow {{n_{\alpha '}}} \) không cùng phương, do đó hai mặt phẳng (\(\alpha \)) và (\(\alpha '\)) cắt nhau.

Gọi \(\varphi \) là góc giữa hai mặt phẳng đó, ta có :

\(\cos \varphi  = {{\left| {\overrightarrow {{n_\alpha }} .\overrightarrow {{n_{\alpha '}}} } \right|} \over {\left| {\overrightarrow {{n_\alpha }} } \right|.\left| {\overrightarrow {{n_{\alpha '}}} } \right|}}\)

           \(= {{\left| {2.1 + \left( { - 1} \right).\left( { - 1} \right) + 3.1} \right|} \over {\sqrt {4 + 1 + 9} .\sqrt {1 + 1 + 1} }} = {6 \over {\sqrt {14} .\sqrt 3 }} = {{2\sqrt 3 } \over {\sqrt {14} }}\)

LG b

Viết phương trình tham số của giao tuyến \(\Delta \) của \((\alpha )\) và \((\alpha ')\).

Lời giải chi tiết:

\(M(x;y\;;z)\) thuộc \(\Delta \) khi và chỉ khi toạ độ của M thoả mãn hệ phương trình :

                    \(\left\{ \matrix{  2x{\rm{ }} - y + {\rm{ }}3z{\rm{ }} + {\rm{ }}1{\rm{ }} = {\rm{ }}0 \hfill \cr  x{\rm{ }} - y + z + {\rm{ }}5{\rm{ }} = {\rm{ }}0. \hfill \cr}  \right.\)

Đặt z = t, ta có

              \(\left\{ \matrix{  2x{\rm{ }} - y = {\rm{ }} - 1{\rm{ }} - 3t{\rm{ }} \hfill \cr  x{\rm{ }} - y = {\rm{ }} - 5{\rm{ }} - t \hfill \cr}  \right. \Rightarrow \left\{ \matrix{  x = 4 - 2t \hfill \cr  y = 9 - t. \hfill \cr}  \right.\)

Vậy phương trình tham số của đường thẳng \(\Delta \) là

\(\left\{ \matrix{  x{\rm{ }} = 4{\rm{ }} - 2t{\rm{ }} \hfill \cr  {\rm{y }} = {\rm{ }}9 - t \hfill \cr  z{\rm{ }} = {\rm{ }}t. \hfill \cr}  \right.\)

LG c

Gọi hình chiếu của M trên mp \((\alpha )\), K là hình chiếu của M trên mp \((\alpha ')\). Tính độ dài đoạn HK.

Lời giải chi tiết:

Vì H là giao điểm của đường thẳng đi qua M, vuông góc với \(\left( \alpha  \right)\) nên toạ độ \((x{\rm{ }};y;{\rm{ }}z)\) của H thoả mãn hệ :

\(\left\{ {\matrix{   {x{\rm{ }} = {\rm{ }}1{\rm{ }} + {\rm{ }}2t} \hfill  \cr   {y{\rm{ }} = {\rm{ }} - t} \hfill  \cr   {z{\rm{ }} = {\rm{ }}5{\rm{ }} + {\rm{ }}3t} \hfill  \cr   {2x{\rm{ }} - y + {\rm{ }}3z{\rm{ }} + {\rm{ }}1{\rm{ }} = 0} \hfill  \cr  } } \right. \)

\(\Rightarrow t =  - {9 \over 7} \Rightarrow H = \left( { - {{11} \over 7};{9 \over 7};{8 \over 7}} \right).\)

Vì K là giao điểm của đường thẳng đi qua M, vuông góc với \(\left( {\alpha '} \right)\) nên toạ độ \((x{\rm{ }};y;{\rm{ }}z)\) của K thoả mãn hệ :

\(\left\{ {\matrix{   {x{\rm{ }} = 1 + {\rm{ }}t} \hfill  \cr   {y{\rm{ }} =  - t} \hfill  \cr   {z{\rm{ }} = 5 + {\rm{ }}t} \hfill  \cr   {x{\rm{ }} - {\rm{ }}y{\rm{ }} + {\rm{ }}z + 5 = 0} \hfill  \cr  } } \right. \)

\(\Rightarrow t =  - {{11} \over 3} \Rightarrow K = \left( { - {8 \over 3};{{11} \over 3};{4 \over 3}} \right).\)

Vậy \(HK = \sqrt {{{\left( { - {8 \over 3} + {{11} \over 7}} \right)}^2} + {{\left( {{{11} \over 3} - {9 \over 7}} \right)}^2} + {{\left( {{4 \over 3} - {8 \over 7}} \right)}^2}} \)

              \( = \sqrt {{{\left( {{{23} \over {21}}} \right)}^2} + {{\left( {{{50} \over {21}}} \right)}^2} + {{\left( {{4 \over {21}}} \right)}^2}}  = {{\sqrt {3045} } \over {21}}.\)

LG d

Tính khoảng cách từ điểm M đến đường thẳng \(\Delta \)

Lời giải chi tiết:

\(\Delta \) là đường thẳng đi qua \({M_o}\left( {4{\rm{ }};{\rm{ }}9{\rm{ }};{\rm{ }}0} \right)\) và có vectơ chỉ phương \(\overrightarrow {{u_\Delta }}  = \left( { - 2; - 1;1} \right).\)

Ta có \(\overrightarrow {{M_o}M}  = {\rm{ }}\left( { - 3{\rm{ }};{\rm{ }} - 9{\rm{ }};{\rm{ }}5} \right),\) suy ra

\(\left[ {\overrightarrow {{M_o}M} ,\overrightarrow {{u_\Delta }} } \right] = \left( {\left| {\matrix{   { - 9} & 5  \cr   { - 1} & 1  \cr  } } \right|;\left| {\matrix{   5 & { - 3}  \cr   1 & { - 2}  \cr  } } \right|;\left| {\matrix{   { - 3} & { - 9}  \cr   { - 2} & { - 1}  \cr  } } \right|} \right) \)

                        \(= {\rm{ }}\left( { - 4{\rm{ }};{\rm{ }} - 7{\rm{ }};{\rm{ }} - 15} \right).\)

Vậy

\(d(M,\Delta ){\rm{ }} = {{\left| {\left[ {\overrightarrow {{M_o}M} ,\overrightarrow {{u_\Delta }} } \right]} \right|} \over {\left| {\overrightarrow {{u_\Delta }} } \right|}} \)

                 \(= \;{{\sqrt {{{\left( { - 4} \right)}^2} + {\rm{ }}{{\left( { - 7} \right)}^2} + {\rm{ }}{{\left( { - 15} \right)}^2}\;} } \over {\sqrt {\;{{\left( { - 2} \right)}^2} + {\rm{ }}{{\left( { - 1} \right)}^2} + {1^2}} }} = {{\sqrt {145} } \over {\sqrt 3 }}.\)

LG e

Viết phương trình đường thẳng đi qua M , vuông góc với \(\Delta \) và cắt \(\Delta \).

Lời giải chi tiết:

Gọi (\(\beta \)) là mặt phẳng đi qua M và vuông góc với \(\Delta \). Phương trình của (\(\beta \)) là

\( - 2(x{\rm{ }} - 1){\rm{ }} - {\rm{ }}1{\rm{ }}\left( {y{\rm{ }} - {\rm{ }}0} \right){\rm{ }} + {\rm{ }}1{\rm{ }}\left( {z{\rm{ }} - {\rm{ }}5} \right){\rm{ }} = {\rm{ }}0\)

hay \(2x{\rm{ }} + {\rm{ }}y - {\rm{ }}z{\rm{ }} + {\rm{ }}3{\rm{ }} = {\rm{ }}0.\)

Gọi J(x ; y ; z) là giao điểm của đường thẳng \(\Delta \) với mặt phẳng (\(\beta \)).

Toạ độ của J thoả mãn hệ

\(\left\{ {\matrix{   \matrix{  x = {\rm{ }}4{\rm{ }} - 2t{\rm{ }} \hfill \cr  {\rm{y }} = {\rm{ }}9{\rm{ }} - t \hfill \cr  {\rm{ }}z{\rm{ }} = {\rm{ }}t \hfill \cr}  \hfill  \cr   {2x{\rm{ }} + {\rm{ }}y - {\rm{ }}z{\rm{ }} + {\rm{ }}3{\rm{ }} = {\rm{ }}0} \hfill  \cr  } } \right.\)

\(\Rightarrow t = {{10} \over 3} \Rightarrow J = \left( { - {8 \over 3};{{17} \over 3};{{10} \over 3}} \right).\)

MJ chính là đường thẳng qua M, vuông góc và cắt đường thẳng \(\Delta \); nó có phương trình chính tắc là

                                   \({{x - 1} \over {11}} = {y \over { - 17}} = {{z - 5} \over 5}.\)

LG g

Viết phương trình mặt phẳng đi qua giao tuyến của \((\alpha )\) ,\((\alpha ')\) và vuông góc với mặt phẳng (P):3x - y + 1=0.

Lời giải chi tiết:

Gọi (R) là mặt phẳng qua \(\Delta \) (giao tuyến của \(\left( \alpha  \right)\) và \(\left( {\alpha '} \right)\)) và vuông góc với mp(P): \(3x{\rm{ }} - y + {\rm{ }}1{\rm{ }} = {\rm{ }}0.\) Mặt phẳng (P) có vectơ pháp tuyến \(\overrightarrow {{n_P}}  = {\rm{ }}\left( {3{\rm{ }};{\rm{ }} - 1{\rm{ }};{\rm{ }}0} \right).\)

Khi đó (R) đi qua điểm Mơ = (4 ; 9 ; 0) và có vectơ pháp tuyến

\(\overrightarrow {{n_R}}  = \left[ {\overrightarrow {{u_\Delta }} ,\overrightarrow {{n_P}} } \right] \)

       \(= \left( {\left| {\matrix{   { - 1} & 1  \cr   { - 1} & 0  \cr  } } \right|;\left| {\matrix{   1 & { - 2}  \cr   0 & 3  \cr  } } \right|;\left| {\matrix{   { - 2} & { - 1}  \cr   3 & { - 1}  \cr  } } \right|} \right)\)

       \(= \left( {1;3;5} \right).\)

Vậy phương trình của mp(R) là

\(1(x{\rm{ }} - 4){\rm{ }} + {\rm{ }}3\left( {y{\rm{ }} - {\rm{ }}9} \right){\rm{ }} + {\rm{ }}5\left( {z{\rm{ }} - {\rm{ }}0} \right){\rm{ }} = {\rm{ }}0\)

\(\Leftrightarrow x + {\rm{ }}3y{\rm{ }} + {\rm{ }}5z{\rm{ }} - {\rm{ }}31{\rm{ }} = 0.\)

soanvan.me