Đề bài

Tìm đa thức P, biết rằng:

\({x^2} - {y^2} + 4xy + P = {1 \over 3}{x^2} - 6xy - 3{y^2} + 2x + 3\)

Lời giải chi tiết

\(\eqalign{  & {x^2} - {y^2} + 4xy + P = {1 \over 3}{x^2} - 6xy - 3{y^2} + 2x + 3  \cr  & ({x^2} - {y^2} + 4xy) + P = ({1 \over 3}{x^2} - 6xy - 3{y^2} + 2x + 3)  \cr  & P = ({1 \over 3}{x^2} - 6xy - 3{y^2} + 2x + 3) - ({x^2} - {y^2} + 4xy)  \cr  & P = {1 \over 3}{x^2} - 6xy - 3{y^2} + 2x + 3 - {x^2} + {y^2} - 4xy  \cr  & P = ({1 \over 3}{x^2} - {x^2}) + ( - 6xy - 4xy) + ( - 3{y^2} + {y^2}) + 2x + 3  \cr  & P =  - {2 \over 3}{x^2} - 10xy - 2{y^2} + 2x + 3. \cr}\)

soanvan.me