Lựa chọn câu để xem lời giải nhanh hơn

Chọn đáp án đúng:

5.7

Cho f(x) = 3x2 - 4x + 9

Tìm \(\dfrac{{\Delta f\left( x \right)}}{{\Delta x}}\) tại x = 1.

A. 2 - 3Δx             B. 2 + 3Δx

C. 1 + 3Δx             D. -2 + 5Δx

Lời giải chi tiết:

Tại \(x = 1\) ta có:

\(\begin{array}{l}\Delta f\left( 1 \right) = f\left( {1 + \Delta x} \right) - f\left( 1 \right)\\ = 3{\left( {1 + \Delta x} \right)^2} - 4\left( {1 + \Delta x} \right) + 9\\ - \left( {{{3.1}^2} - 4.1 + 9} \right)\\ = 6\Delta x + 3{\left( {\Delta x} \right)^2} - 4\Delta x\\ = 2\Delta x + 3{\left( {\Delta x} \right)^2}\\ \Rightarrow \dfrac{{\Delta f\left( x \right)}}{{\Delta x}} = \dfrac{{2\Delta x + 3{{\left( {\Delta x} \right)}^2}}}{{\Delta x}}\\ = 2 + 3\Delta x\end{array}\)

Chọn đáp án: B

5.8

Cho hàm số y = sin2x. Tìm \(\dfrac{{\Delta y}}{{\Delta x}}\) tại x = π/4

A. \( - \dfrac{{2{{\sin }^2}\Delta x}}{{\Delta x}}\)

B. \(\dfrac{{\sin \Delta x}}{{\Delta x}}\)

C. \(\dfrac{{2{{\sin }^2}\Delta x}}{{\Delta x}}\)

D. \(\dfrac{{3{{\sin }^2}\Delta x}}{{\Delta x}}\)

Lời giải chi tiết:

Tại \(x = \dfrac{\pi }{4}\) ta có:

\(\begin{array}{l}\Delta y = f\left( {\dfrac{\pi }{4} + \Delta x} \right) - f\left( {\dfrac{\pi }{4}} \right)\\ = \sin \left( {\dfrac{\pi }{2} + 2\Delta x} \right) - \sin \dfrac{\pi }{2}\\ = \cos \left( {2\Delta x} \right) - 1\\ = 1 - 2{\sin ^2}\Delta x - 1\\ =  - 2{\sin ^2}\Delta x\\ \Rightarrow \dfrac{{\Delta y}}{{\Delta x}} = \dfrac{{ - 2{{\sin }^2}\Delta x}}{{\Delta x}}\end{array}\)

Chọn đáp án: A

5.9

Cho hàm số \(y = \left\{ \begin{array}{l}x\,neu\,x < 0\\{x^2}\,neu\,x \ge 0\end{array} \right.\)

Hãy tính:

a) \(\mathop {\lim }\limits_{\Delta x \to {0^ + }} \dfrac{{\Delta y}}{{\Delta x}}\) tại x = 0;

b) \(\mathop {\lim }\limits_{\Delta x \to {0^ - }} \dfrac{{\Delta y}}{{\Delta x}}\) tại x = 0.

A. a) -1; b) 1             B. a) 1; b) 1

C. a) 0; b) 0             D. a) 0; b) 1

Lời giải chi tiết:

a) Với \(x > 0\) thì \(y = {x^2}\)

Tại \(x = 0\) ta có:

\(\begin{array}{l}\Delta y = {\left( {0 + \Delta x} \right)^2} - {0^2} = {\left( {\Delta x} \right)^2}\\ \Rightarrow \mathop {\lim }\limits_{\Delta x \to {0^ + }} \dfrac{{\Delta y}}{{\Delta x}} = \mathop {\lim }\limits_{\Delta x \to {0^ + }} \dfrac{{{{\left( {\Delta x} \right)}^2}}}{{\Delta x}}\\ = \mathop {\lim }\limits_{\Delta x \to {0^ + }} \left( {\Delta x} \right) = 0\end{array}\)

b) Với \(x < 0\) thì \(y = x\)

Tại \(x = 0\) ta có:

\(\begin{array}{l}\Delta y = 0 + \Delta x - 0 = \Delta x\\ \Rightarrow \mathop {\lim }\limits_{\Delta x \to {0^ - }} \dfrac{{\Delta y}}{{\Delta x}} = \mathop {\lim }\limits_{\Delta x \to {0^ - }} \dfrac{{\Delta x}}{{\Delta x}} = 1\end{array}\)

Chọn đáp án: D

5.10

Viết phương trình tiếp tuyến của đồ thị hàm số \(y = \dfrac{{{x^2} + 4x + 5}}{{x + 2}}\) tại điểm có hoành độ x = 0

A. \(y = \dfrac{3}{4}x - \dfrac{5}{2}\)

B. \(y = x + \dfrac{5}{2}\)

C. \(y = \dfrac{3}{4}x + 1\)

D. \(y = \dfrac{3}{4}x + \dfrac{5}{2}\)

Phương pháp giải:

Phương trình tiếp tuyến: y = f’(xo)(x - xo) + yo.

Lời giải chi tiết:

Ta có: \(y = \dfrac{{{x^2} + 4x + 5}}{{x + 2}}\) \( = \dfrac{{\left( {{x^2} + 4x + 4} \right) + 1}}{{x + 2}}\) \( = \dfrac{{{{\left( {x + 2} \right)}^2} + 1}}{{x + 2}}\) \( = x + 2 + \dfrac{1}{{x + 2}}\)

\( \Rightarrow y' = 1 - \dfrac{1}{{{{\left( {x + 2} \right)}^2}}}\)

Tại \(x = 0\) thì \(y'\left( 0 \right) = 1 - \dfrac{1}{{{{\left( {0 + 2} \right)}^2}}} = \dfrac{3}{4}\) và \(y\left( 0 \right) = 0 + 2 + \dfrac{1}{{0 + 2}} = \dfrac{5}{2}\)

Phương trình tiếp tuyến: \(y = \dfrac{3}{4}\left( {x - 0} \right) + \dfrac{5}{2}\) hay \(y = \dfrac{3}{4}x + \dfrac{5}{2}\).

Chọn đáp án: D

5.11

Viết phương trình tiếp tuyến của đồ thị hàm số \(y = \sqrt {2x + 1} \), biết hệ số góc của tiếp tuyến bằng 1/3.

A. \(y = \dfrac{x}{2} + \dfrac{5}{3}\)

B. \(y = \dfrac{x}{3} - \dfrac{5}{3}\)

C. \(y = \dfrac{x}{3} + \dfrac{5}{3}\)

D. \(y = x - 1\)

Phương pháp giải:

Giải phương trình y’ = 1/3 để tìm hoành đọ tiếp điểm.

Lời giải chi tiết:

Ta có: \(y' = \dfrac{1}{{\sqrt {2x + 1} }}\)

Gọi \(M\left( {{x_0};{y_0}} \right)\) là tiếp điểm, ta có

\(\begin{array}{l}f'\left( {{x_0}} \right) = k = \dfrac{1}{3}\\ \Leftrightarrow \dfrac{1}{{\sqrt {2{x_0} + 1} }} = \dfrac{1}{3}\\ \Leftrightarrow \sqrt {2{x_0} + 1}  = 3\\ \Leftrightarrow 2{x_0} + 1 = 9\\ \Leftrightarrow {x_0} = 4\\ \Rightarrow {y_0} = 3\end{array}\)

Phương trình tiếp tuyến: \(y = \dfrac{1}{3}\left( {x - 4} \right) + 3\) hay \(y = \dfrac{x}{3} + \dfrac{5}{3}\).

Chọn đáp án: C

soanvan.me