Đề bài
Cho dãy số (un) xác định bởi :
\({u_1} = 1\,\text{ và }\,{u_n} = 2{u_{n - 1}} + 3\) với mọi \(n ≥ 2\).
Bằng phương pháp quy nạp, chứng minh rằng với mọi \(n ≥ 1\) ta có \({u_n} = {2^{n + 1}}-3\) (1)
Lời giải chi tiết
+) Với \(n = 1\) ta có \({u_1} = 1 = {2^2}-3\).
Vậy (1) đúng với \(n = 1\)
+) Giả sử (1) đúng với \(n = k\) tức là ta có : \({u_k} = {2^{k + 1}} - 3\)
+) Ta chứng minh (1) đúng với \(n = k + 1\), tức là phải chứng minh :
\({u_{k + 1}} = {2^{k + 2}} - 3\)
Thật vậy theo giả thiết qui nạp ta có :
\({u_{k + 1}} = 2{u_k} + 3 = 2\left( {{2^{k + 1}} - 3} \right) + 3 = {2^{k + 2}} - 3\)
Vậy (1) đúng với \(n = k + 1\) do đó (1) đúng với mọi \(n \in \mathbb N^*\).
soanvan.me