Lựa chọn câu để xem lời giải nhanh hơn

 Áp dụng định nghĩa giới hạn bên phải và giới hạn bên trái của hàm số, tìm các giới hạn sau :

LG a

\(\mathop {\lim }\limits_{x \to {1^ + }} \sqrt {x - 1} \)

Phương pháp giải:

Giới hạn phải

Giả sử hàm số \({\rm{f}}\) xác định định trên khoảng \(\left( {{x_o};b} \right)\). Ta nói rằng hàm số \({\rm{f}}\) có giới hạn bên phải là số thực \(L\) khi \(x\) tiến về \({x_o}\) nếu mọi dãy \(\left( {{x_n}} \right)\) trong khoảng \(\left( {{x_o};b} \right)\) mà \(\lim{\rm{ }}{x_n} = {x_o}\) ta đều có \(\lim{\rm{ (f(}}{x_n})) = L\).

Khi đó, ta viết: \(\mathop {\lim}\limits_{x \to x_o^ + } {\rm{f}}\left( x \right) = L\) hoặc \({\rm{f}}\left( x \right) \to L\) khi \(x \to x_o^ + \).

Giới hạn trái

Giả sử hàm số \({\rm{f}}\) xác định định trên khoảng \(\left( {a;{x_o}} \right)\). Ta nói rằng hàm số \({\rm{f}}\) có giới hạn bên trái là số thực \(L\) khi \(x\) tiến về \({x_o}\) nếu mọi dãy \(\left( {{x_n}} \right)\) trong khoảng \(\left( {a;{x_o}} \right)\) mà \(\lim{\rm{ }}{x_n} = {x_o}\) ta đều có \(\lim{\rm{ (f(}}{x_n})) = L\).

Khi đó, ta viết: \(\mathop {\lim}\limits_{x \to x_o^ - } {\rm{f}}\left( x \right) = L\) hoặc \({\rm{f}}\left( x \right) \to L\) khi \(x \to x_o^ - \).

Lời giải chi tiết:

TXĐ: \(D = \left[ {1; + \infty } \right)\)

Với mỗi dãy \(\left( {{x_n}} \right) \subset \left( {1; + \infty } \right)\) mà \(\lim {x_n} = 1\) ta có:

\(\lim f\left( {{x_n}} \right) = \lim \sqrt {{x_n} - 1} \)\( = \sqrt {1 - 1}  = 0\) nên \(\mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right) = 0\).

LG b

 \(\mathop {\lim }\limits_{x \to {5^ - }} \left( {\sqrt {5 - x} + 2x} \right)\)

Lời giải chi tiết:

TXĐ: \(D = \left( { - \infty ;5} \right]\)

Với mỗi dãy \(\left( {{x_n}} \right) \subset \left( { - \infty ;5} \right)\) mà \(\lim {x_n} = 5\) ta có:

\(\lim f\left( {{x_n}} \right) = \lim \left( {\sqrt {5 - {x_n}}  + 2{x_n}} \right)\)\( = \sqrt {5 - 5}  + 2.5 = 10\) nên \(\mathop {\lim }\limits_{x \to {5^ - }} f\left( x \right) = 10\).

LG c

\(\mathop {\lim }\limits_{x \to {3^ + }} {1 \over {x - 3}}\)

Lời giải chi tiết:

TXĐ: \(D = \mathbb{R}\backslash \left\{ 3 \right\}\)

Với mỗi dãy \(\left( {{x_n}} \right) \subset \left( {3; + \infty } \right)\) mà \(\lim {x_n} = 3\) ta có:

\(\lim f\left( {{x_n}} \right) = \lim \dfrac{1}{{{x_n} - 3}} =  + \infty \) vì \(\lim 1 = 1 > 0\) và \(\left\{ \begin{array}{l}\lim \left( {{x_n} - 3} \right) = 0\\{x_n} > 3 \Rightarrow {x_n} - 3 > 0\end{array} \right.\)

Vậy \(\mathop {\lim }\limits_{x \to {3^ + }} \dfrac{1}{{x - 3}} =  + \infty \)

LG d

\(\mathop {\lim }\limits_{x \to {3^ - }} {1 \over {x - 3}}\)

Lời giải chi tiết:

TXĐ: \(D = \mathbb{R}\backslash \left\{ 3 \right\}\)

Với mỗi dãy \(\left( {{x_n}} \right) \subset \left( { - \infty ;3} \right)\) mà \(\lim {x_n} = 3\) ta có:

\(\lim f\left( {{x_n}} \right) = \lim \dfrac{1}{{{x_n} - 3}} =  - \infty \) vì \(\lim 1 = 1 > 0\) và \(\left\{ \begin{array}{l}\lim \left( {{x_n} - 3} \right) = 0\\{x_n} < 3 \Rightarrow {x_n} - 3 < 0\end{array} \right.\)

Vậy \(\mathop {\lim }\limits_{x \to {3^ - }} \dfrac{1}{{x - 3}} =  - \infty \)

soanvan.me