Đề bài
Xác định tập hợp các điểm trong mặt phẳng phức biểu diễn các số \(z' = \alpha z + \beta \) trong đó z là số phức tùy ý thỏa mãn \(\left| {z - {z_0}} \right| \le R({z_0},\alpha \ne 0,\beta \) là những số phức cho trước, R là số thực dương cho trước)
Lời giải chi tiết
Vì \(\alpha \ne 0,z' = \alpha z + \beta \Leftrightarrow z = {{z' + \beta } \over \alpha }\), từ đó
\(\left| {z - {z_0}} \right| \le R \Leftrightarrow \left| {{{z' - \beta } \over \alpha } - {z_0}} \right| \le R\)
\(\Leftrightarrow \left| {z' - (\alpha {z_0} + \beta )} \right| \le R\left| \alpha \right|\)
Vậy tập hợp cần tìm là hình tròn ( kể cả đường tròn biên ) với tâm là điểm biểu diễn số \(\alpha {z_0} + \beta \), với bán kính bằng \(R\left| \alpha \right|\).
soanvan.me