Lựa chọn câu để xem lời giải nhanh hơn

Tìm giới hạn của các dãy số (un) với

LG a

\({u_n} = {{2{n^3} - n - 3} \over {5n - 1}}\)

Phương pháp giải:

Chia cả tử và mẫu cho lũy thừa bậc cao nhất của n.

Lời giải chi tiết:

Ta có:

\(\eqalign{
& \lim {{2{n^3} - n - 3} \over {5n - 1}} \cr &= \lim {{{n^3}\left( {2 - {1 \over {{n^2}}} - {3 \over {{n^3}}}} \right)} \over {{n^3}\left( {{5 \over {{n^2}}} - {1 \over {{n^3}}}} \right)}} \cr 
& = \lim {{2 - {1 \over {{n^2}}} - {3 \over {{n^3}}}} \over {{5 \over {{n^2}}} - {1 \over {{n^3}}}}} = + \infty \cr 
& \text{ vì }\,\lim \left( {2 - {1 \over {{n^2}}} - {3 \over {{n^3}}}} \right) = 2\cr &\text{ và }\,\lim \left( {{5 \over {{n^2}}} - {1 \over {{n^3}}}} \right) = 0;5n - 1 > 0 \cr} \)

LG b

\({u_n} = {{\sqrt {{n^4} - 2n + 3} } \over { - 2{n^2} + 3}}\)

Lời giải chi tiết:

\(\eqalign{
& \lim {{\sqrt {{n^4} - 2n + 3} } \over { - 2{n^2} + 3}} \cr &= \lim {{{n^2}\sqrt {1 - {2 \over {{n^3}}} + {3 \over {{n^4}}}} } \over {{n^2}\left( { - 2 + {3 \over {{n^2}}}} \right)}} \cr 
& = \lim {{\sqrt {1 - {2 \over {{n^3}}} + {3 \over {{n^4}}}} } \over { - 2 + {3 \over {{n^2}}}}}\cr &= - {1 \over 2} \cr} \)

LG c

 \({u_n} = - 2{n^2} + 3n - 7\)

Phương pháp giải:

Đặt lũy thừa bậc cao nhất của n ra làm nhân tử chung.

Lời giải chi tiết:

\(\eqalign{
& \lim \left( { - 2{n^2} + 3n - 7} \right) \cr &= \lim {n^2}\left( { - 2 + {3 \over n} - {7 \over {{n^2}}}} \right) = - \infty \cr 
& \text{vì }\,\lim {n^2} = + \infty \,\text{ và }\cr &\lim \left( { - 2 + {3 \over n} - {7 \over {{n^2}}}} \right) = - 2 < 0 \cr} \)

LG d

\({u_n} = \root 3 \of {{n^9} + 8{n^2} - 7} \)

Lời giải chi tiết:

\(\eqalign{
& \lim \root 3 \of {{n^9} + 8{n^2} - 7} \cr &= \lim {n^3}.\root 3 \of {1 + {8 \over {{n^7}}} - {7 \over {{n^9}}}} = + \infty \cr 
& \text{ vì }\,\lim {n^3} = + \infty \cr &\text{ và }\,\lim \root 3 \of {1 + {8 \over {{n^7}}} - {7 \over {{n^9}}}} = 1 > 0 \cr} \)

soanvan.me