Lựa chọn câu để xem lời giải nhanh hơn

HĐ 1

Tính chỉ số WHtR của ông An và ông Chung

Phương pháp giải:

Tính chỉ số WHtR của mỗi ông:

Chỉ số WHtR = Số đo vòng bụng : Chiều cao

Lời giải chi tiết:

Chỉ số WHtR của ông An là: \(\frac{{108}}{{180}} = 0,6\)

Chỉ số WHtR của ông Chung là: \(\frac{{70}}{{160}} = 0,4375\)

HĐ 2

Ta có thể viết \(1,5 = \frac{3}{2} = \frac{6}{4} = \frac{9}{6} = ....\)

Tương tự, em hãy viết ba phân số bằng nhau và bằng:

a) -2,5;                          b) \(2\frac{3}{4}\)

Phương pháp giải:

a) + Viết số thập phân dưới dạng phân số

+ Nhân cả tử và mẫu với một số nguyên khác 0, ta được phân số mới bằng phân số đã cho.

b) + Viết hỗn số dưới dạng phân số

+ Nhân cả tử và mẫu với một số nguyên khác 0, ta được phân số mới bằng phân số đã cho.

Lời giải chi tiết:

\(\begin{array}{l}a) - 2,5 = \frac{{ - 5}}{2} = \frac{{ - 10}}{4} = \frac{{ - 15}}{6} = ....\\b)2\frac{3}{4} = \frac{{11}}{4} = \frac{{22}}{8} = \frac{{33}}{{12}} = ...\end{array}\)

Luyện tập 1

Giải thích vì sao các số \(8; - 3,3;3\frac{2}{3}\) đều là các số hữu tỉ. Tìm số đối của mỗi số đó

Phương pháp giải:

Số hữu tỉ là số viết được dưới dạng phân số \(\frac{a}{b}(a,b \in Z,b \ne 0)\)

Số đối của số hữu tỉ \(\frac{a}{b}\) là số hữu tỉ \(\frac{{ - a}}{b}\).

Lời giải chi tiết:

Các số \(8; - 3,3;3\frac{2}{3}\) đều là các số hữu tỉ vì các số này đều viết được dưới dạng phân số \(\frac{a}{b}(a,b \in Z,b \ne 0)\)

(\(8 = \frac{8}{1}; - 3,3 = \frac{{ - 33}}{{10}};3\frac{2}{3} = \frac{{11}}{3}\))

Số đối của 8 là -8

Số đối của -3,3 là 3,3

Số đối của \(3\frac{2}{3}\) là \( - 3\frac{2}{3}\)

Câu hỏi

Mỗi điểm A,B,C trên trục số Hình 1.4 biểu diễn số hữu tỉ nào?

Phương pháp giải:

Xác định số vạch chia và khoảng cách từ gốc O đến điểm đó là bao nhiêu phần.

Các điểm nằm bên trái gốc O biểu diễn số hữu tỉ âm; các điểm nằm bên phải gốc O biểu diễn số hữu tỉ dương.

Lời giải chi tiết:

Đoạn thẳng đơn vị được chia thành 6 phần bằng nhau, lấy một đoạn làm đơn vị mới, đơn vị mới bằng \(\frac{1}{6}\) đơn vị cũ.

Điểm A nằm bên phải gốc O và cách O một đoạn bằng 10 đơn vị mới. Do đó điểm A biểu diễn số hữu tỉ \(\frac{{10}}{6} = \frac{5}{3}\)

Điểm B nằm bên trái gốc O và cách O một đoạn bằng 5 đơn vị mới. Do đó điểm B biểu diễn số hữu tỉ \(\frac{{ - 5}}{6}\)

Điểm C nằm bên trái gốc O và cách O một đoạn bằng 13 đơn vị mới. Do đó điểm C biểu diễn số hữu tỉ \(\frac{{ - 13}}{6}\)

Luyện tập 2

Biểu diễn các số hữu tỉ \(\frac{5}{4}\) và \(\frac{{ - 5}}{4}\) trên trục số.

Phương pháp giải:

Chia đoạn thẳng đơn vị thành 4 phần bằng nhau. Lấy một đoạn làm đơn vị mới ( đơn vị mới bằng \(\frac{1}{4}\) đơn vị cũ)

Số hữu tỉ \(\frac{5}{4}\) được biểu diễn bằng điểm nằm bên phải gốc O, cách gốc O một đoạn bằng 5 đơn vị mới.

Số hữu tỉ \(\frac{{ - 5}}{4}\) được biểu diễn bằng điểm nằm bên trái gốc O, cách gốc O một đoạn bằng 5 đơn vị mới.

Lời giải chi tiết: