HĐ 4
Tính và so sánh:
a) \({( - 3)^2}.{( - 3)^4}\) và \({( - 3)^6}\);
b) \(0,6{}^3:0,{6^2}\) và \(0,{6}\)
Phương pháp giải:
Tính dựa vào định nghĩa lũy thừa.
Lời giải chi tiết:
a)
\(\begin{array}{l}{( - 3)^2}.{( - 3)^4} = 9.81 = 729\\ {( - 3)^6} = ( - 3).( - 3).( - 3).( - 3).( - 3).( - 3)\\ = 9.9.9 = 729\end{array}\)
Vậy \({( - 3)^2}.{( - 3)^4}\) = \({( - 3)^{6}}\)
b)
\(\begin{array}{l}0,6{}^3:0,{6^2} = 0,216:0,36 = 0,6\end{array}\)
Vậy \(0,6{}^3:0,{6^2}\) = \(0,{6}\)
Luyện tập 3
Viết kết quả của các phép tính sau dưới dạng lũy thừa.
\(\begin{array}{l}a){( - 2)^3}.{( - 2)^4};\\b){(0,25)^7}:{(0,25)^3}\end{array}\)
Phương pháp giải:
Sử dụng công thức tích và thương của lũy thừa có cùng cơ số:
\(\begin{array}{l}{x^m}.{x^n} = {x^{m + n}};\\{x^m}:{x^n} = {x^{m - n}}(x \ne 0;m \ge n)\end{array}\)
Lời giải chi tiết:
\(\begin{array}{l}a){( - 2)^3}.{( - 2)^4} = {( - 2)^{3 + 4}} = {( - 2)^7}\\b){(0,25)^7}:{(0,25)^3} = {(0,25)^{7 - 3}} = {(0,25)^4}\end{array}\)