Lựa chọn câu để xem lời giải nhanh hơn

2. Trừ hai đa thức một biến

HĐ 1

Cho hai đa thức P = x4 + 3x3 – 5x2 + 7x và Q = -x3 + 4x2 – 2x +1

Tìm hiệu P – Q bằng cách bỏ dấu ngoặc rồi nhóm các hạng tử cùng bậc và thu gọn.

Phương pháp giải:

+ Bước 1: Bỏ dấu ngoặc: Trước dấu ngoặc là dấu “ –“ thì ta bỏ dấu ngoặc đồng thời đổi dấu tất cả các số hạng trong ngoặc.

 +Bước 2: Nhóm các hạng tử cùng bậc

+ Bước 3: Thu gọn

Lời giải chi tiết:

Ta có: P – Q = x4 + 3x3 – 5x2 + 7x – (-x3 + 4x2 – 2x +1)

= x4 + 3x3 – 5x2 + 7x + x3 - 4x2 - 4x2 + 2x – 1

= x4 + (3x3+ x3 ) + (– 5x2 - 4x2 ) + (7x + 2x ) – 1

= x4 + 4x3 – 9x2 + 9x – 1

HĐ 2

Cho hai đa thức P = x4 + 3x3 – 5x2 + 7x và Q = -x3 + 4x2 – 2x +1

Tìm hiệu P – Q bằng cách đặt tính trừ: đặt đa thức Q dưới đa thức P sao cho các hạng tử cùng bậc thẳng cột với nhau rồi trừ theo từng cột.

Phương pháp giải:

Bước 1: Đặt đa thức Q dưới đa thức P sao cho các hạng tử cùng bậc thẳng cột với nhau

Bước 2: Trừ theo từng cột

Lời giải chi tiết:

Luyện tập 2

Cho hai đa thức:

M = 0,5x4 – 4x3 + 2x – 2,5 và N = 2x3 + x2 + 1,5

Hãy tính hiệu M - N ( trình bày theo 2 cách)

Phương pháp giải:

Cách 1: Bỏ dấu ngoặc rồi nhóm các hạng tử cùng bậc.

Cách 2: Đặt tính trừ sao cho các hạng tử cùng bậc đặt thẳng cột với nhau rồi trừ theo từng cột.

Lời giải chi tiết:

Cách 1:

M - N = (0,5x4 – 4x3 + 2x – 2,5) - ( 2x3 + x2 + 1,5)

= 0,5x4 – 4x3 + 2x – 2,5 - 2x3 - x2 - 1,5

= 0,5x4 + (– 4x3 - 2x3 ) - x2 + 2x + (-2,5 - 1,5)

= 0,5x4 + (– 6x3 ) - x2 + 2x + (-4)

= 0,5x4 – 6x3 - x2 + 2x – 4

Cách 2:

Vận dụng 2

Cho đa thức A = x4 – 3x2 – 2x + 1. Tìm các đa thức B và C sao cho:

A + B = 2x5 + 5x3 – 2

A – C = x3

Phương pháp giải:

B = (A + B) – A

C = A – (A – C)

Thực hiện phép trừ đa thức:

Bỏ dấu ngoặc: Trước dấu ngoặc là dấu “ –“ thì ta bỏ dấu ngoặc đồng thời đổi dấu tất cả các số hạng trong ngoặc rồi nhóm các hạng tử cùng bậc

Lời giải chi tiết:

Ta có:

B = (A + B) – A = 2x5 + 5x3 – 2 – (x4 – 3x2 – 2x + 1)

= 2x5 + 5x3 – 2 – x4 + 3x2 + 2x - 1

= 2x5 – x4 + 5x3 + 3x2 + (-2 – 1)

= 2x5 – x4 + 5x3 + 3x2 – 3

C = A – (A – C) = x4 – 3x2 – 2x + 1 – x3

= x4 – x3– 3x2 – 2x + 1

Vậy B = 2x5 – x4 + 5x3 + 3x2 – 3

C = x4 – x3– 3x2 – 2x + 1