Lựa chọn câu để xem lời giải nhanh hơn

HĐ Khám phá 3

Xét các cặp mệnh đề nằm cùng dòng của bảng (có hai cột P và \(\overline P \)) sau đây:

P

\(\overline P \)

Dơi là một loài chim

Dơi không phải là một loài chim

\(\pi \) không phải là một số hữu tỉ

\(\pi \) là một số hữu tỉ

\(\sqrt 2  + \sqrt 3  > \sqrt 5 \)

\(\sqrt 2  + \sqrt 3  \le \sqrt 5 \)

\(\sqrt 2 .\sqrt {18}  = 6\)

\(\sqrt 2 .\sqrt {18}  \ne 6\)

Lời giải chi tiết:

P

 

\(\overline P \)

 

Dơi là một loài chim

Sai

Dơi không phải là một loài chim

Đúng

\(\pi \) không phải là một số hữu tỉ

Đúng

\(\pi \) là một số hữu tỉ

Sai

\(\sqrt 2  + \sqrt 3  > \sqrt 5 \)

Đúng

\(\sqrt 2  + \sqrt 3  \le \sqrt 5 \)

Sai

\(\sqrt 2 .\sqrt {18}  = 6\)

Đúng

\(\sqrt 2 .\sqrt {18}  \ne 6\)

Sai

 

Chú ý:

Hai mệnh đề cùng cặp luôn có một mệnh đề đúng và một mệnh đề sai.

Nếu P đúng thì \(\overline P \) sai và ngược lại.

Thực hành 4

Phát biểu mệnh đề phủ định của các mệnh đề sau. Xét tính đúng sai của mỗi mệnh đề và mệnh đề phủ định của nó.

a) Paris là thủ đô của nước Anh

b) 23 là số nguyên tố

c) 2021 chia hết cho 3

d) Phương trình \({x^2} - 3x + 4 = 0\) vô nghiệm.

Phương pháp giải:

Để phủ định mệnh đề, ta thêm (hoặc bớt) từ “không” hoặc “không phải” vào trước vị ngữ của mệnh đề đó. Hoặc diễn đạt bằng từ ngữ, kí hiệu toán học đối lập.

Lời giải chi tiết:

Mệnh đề phủ định của các mệnh đề trên là:

a) “Paris không phải là thủ đô của nước Anh”

b) “23 không phải là số nguyên tố”

c) “2021 không chia hết cho 3”

d) “Phương trình \({x^2} - 3x + 4 = 0\) có nghiệm”.

+) Xét tính đúng sai:

a) “Paris là thủ đô của nước Anh” là mệnh đề sai.

“Paris không phải là thủ đô của nước Anh” là mệnh đề đúng.

b) “23 là số nguyên tố” là mệnh đề đúng.

“23 không phải là số nguyên tố” là mệnh đề sai.

c) “2021 chia hết cho 3” là mệnh đề sai.

“2021 không chia hết cho 3” là mệnh đề đúng.

d) “Phương trình \({x^2} - 3x + 4 = 0\) vô nghiệm” là mệnh đề đúng.

“Phương trình \({x^2} - 3x + 4 = 0\) có nghiệm” là mệnh đề sai.