Luyện tập vận dụng 3
Một xưởng may có 56 công nhân dự định hoàn thành một hợp đồng trong 21 ngày. Nhưng bên đặt hàng muốn nhận hàng sớm nên xưởng may cần phải hoàn thành hợp đồng trong 14 ngày. Hỏi xưởng may cần tăng thêm bao nhiêu công nhân? Giả sử năng suất của mỗi công nhân là như nhau.
Phương pháp giải:
+) Số công nhân và thời gian hoàn thành công việc là hai đại lượng tỉ lệ nghịch.
Sử dụng tính chất 2 đại lượng tỉ lệ nghịch: x1. y1 = x2. y2
+) Số công nhân cần tăng thêm = số công nhân cần – số công nhân có sẵn
Lời giải chi tiết:
Gọi số công nhân cần để hoàn thành hợp đồng trong 14 ngày là x (x > 0)
Vì khối lượng công việc không đổi và năng suất của mỗi người là như nhau nên số công nhân và thời gian hoàn thành công việc là hai đại lượng tỉ lệ nghịch nên theo tính chất của 2 2 đại lượng tỉ lệ nghịch, ta có: 56.21 = x.14 nên x = \(\frac{{56.21}}{{14}} = 84\)
Số công nhân cần tăng thêm là:
84 – 56 = 28 (người)
Luyện tập vận dụng 4
Có ba bánh răng a,b,c ăn khớp nhau (Hình 8). Số răng a,b,c theo thứ tự là 12;24;18. Cho biết mỗi phút bánh răng a quay được 18 vòng. Tính số vòng quay trong một phút của mỗi bánh răng b và c.
Phương pháp giải:
Số răng và số vòng quay được của bánh răng là 2 đại lượng tỉ lệ nghịch
Sử dụng tính chất 2 đại lượng tỉ lệ nghịch: x1. y1 = x2. y2 = x3. y3
Lời giải chi tiết:
Vì quãng đường quay được của 3 bánh răng là như nhau nên số răng và số vòng quay được của bánh răng là hai đại lượng tỉ lệ nghịch
Gọi số vòng quay được trong 1 phút của bánh răng b và c lần lượt là x, y (vòng) (x,y >0)
Theo tính chất của 2 đại lượng tỉ lệ nghịch, ta có:
12. 18 = 24 . x = 18 . y
Nên x = 12.18:24 = 9 (vòng)
y = 12.18 : 18 = 12 (vòng)
Vậy số vòng quay trong một phút của mỗi bánh răng b và c lần lượt là: 9 vòng và 12 vòng.