Đề bài
Bài 1: Cho tam giác ABC có \(\widehat B = 60^\circ ,\widehat C = 45^\circ \) nội tiếp đường tròn (O; R). Từ A vẽ đường thẳng vuông góc với BC cắt BC ở H và cắt đường tròn ở điểm thứ hai D.
a) Tính độ dài các cạnh của tam giác ABC theo R.
b) Chứng minh tứ giác ABDC là hình thang cân và tính diện tích của tứ giác ấy theo R.
c) Quay hình thang cân ABDC một vòng xung quanh trục đối xứng của nó, hình được sinh ra là hình gì ? Tính thể tích của hình được sinh ra.
Bài 2: Chi tiết máy có dạng như hình vẽ. Tính diện tích bề mặt và thể tích của chi tiết đó.
LG bài 1
Phương pháp giải:
Sử dụng:
+Số đo góc nội tiếp bằng nửa số đo góc ở tâm
+Định lý Py-ta -go
+Hai góc nội tiếp cùng chắn 1 cung thì bằng nhau
+Hình thang có 4 đỉnh trên đường tròn là hình thang cân
+Diện tích hình thang: \(S = \frac{{\left( {a + b} \right).h}}{2}\)
+Thể tích của hình nón cụt :\(V = {1 \over 3}\pi h.\left( {R_1^2 + R_2^2 + {R_1}{R_2}} \right) \)
Lời giải chi tiết:
a) Xét đường tròn (O) có \(\widehat {ACB}\) là góc nội tiếp chắn cung AB và \(\widehat {AOB}\) là góc ở tâm chắn cung AB
Mà \(\widehat C = 45^\circ (gt) \)\( \Rightarrow \widehat {AOB} =2\widehat C= 90^\circ .\)
Xét tam giác vuông AOB, theo định lý Pytago ta có:
\(A{B^2} = O{B^2} + O{A^2} \)\(= {R^2} + {R^2} = 2{R^2}\)
Do đó \(AB = R\sqrt 2 \)
\(\widehat B = 60^\circ (gt) \Rightarrow AC = R\sqrt 3 \)
∆AHB vuông có \(\widehat B = 60^\circ \) và \(AB = R\sqrt 2 \)
\( \Rightarrow HB = AB.\cos 60^\circ = {{R\sqrt 2 } \over 2}\)
Đặt \(HC = x\), ta có :
\(H{C^2} + {\rm{ }}H{A^2} = {\rm{ }}A{C^2}\) hay \({x^2} + {\rm{ }}{x^2} = {\left( {R\sqrt 3 } \right)^2}\)
\(2{x^2} = 3{R^2} \Rightarrow x = {{R\sqrt 3 } \over {\sqrt 2 }} = {{R\sqrt 6 } \over 2}\)
Do đó \(BC = BH + HC = {{R\sqrt 2 } \over 2} + {{R\sqrt 6 } \over 2}\)\(\; = {{R\sqrt 2 \left( {1 + \sqrt 3 } \right)} \over 2}\).
b) Ta có ∆AHC vuông tại H, có \(\widehat {ACH} = 45^\circ \)(gt) \(\Rightarrow\) ∆AHC vuông cân tại H
Mặt khác \(\widehat {DBC} = \widehat {DAC} = 45^\circ \)(góc nội tiếp cùng chắn cung CD)
\( \Rightarrow \widehat {ACB} = \widehat {CBD} = 45^\circ \). Mà 2 góc này ở vị trí so le trong
Do đó AC // BD (Dấu hiệu nhận biết 2 đường thẳng song song)
Vậy ABDC là hình thang có bốn đỉnh A, B, D, C thuộc đường tròn nên ABDC là hình thang cân.
Ta có ∆AHB vuông tại H, có \(\widehat B = 60^\circ \Rightarrow \widehat {BAD} = 30^\circ \).
Do đó \(\widehat {BOD} = 60^\circ \) (góc nội tiếp bằng nửa góc ở tâm cùng chắn một cung) \(\Rightarrow\) ∆BOD đều.
\(BD = R\). Gọi \(IK\) là trục đối xứng của hình thang cân ABDC, ta có :
\(OI = {{R\sqrt 3 } \over 2},OK = {R \over 2}\) ( vì ∆AOC cân có \(\widehat {AOC} = 120^\circ \) )
Do đó \(IK = IO + OK = {{R\sqrt 3 } \over 2} + {R \over 2} \)\(\;= {{R\left( {\sqrt 3 + 1} \right)} \over 2}\)
Vậy \({S_{ABDC}} = {{\left( {AC + BD} \right).IK} \over 2}\)\(\; = {{\left( {R\sqrt 3 + R} \right).{{R\left( {\sqrt 3 + 1} \right)} \over 2}} \over 2} = {{{R^2}\left( {2 + \sqrt 3 } \right)} \over 2}\) .
c) Đường IK là trục đối xứng của hình thang ABDC. Khi quay hình thang cân ABDC một vòng quanh IK ta được hình sinh ra là hình nón cụt có bán kính đáy lớn là \({{AC} \over 2} = {{R\sqrt 3 } \over 2}\), đáy nhỏ là \({{BD} \over 2} = {R \over 2}\) và đường cao \(IK = {{R\left( {\sqrt 3 + 1} \right)} \over 2}\).
Vậy thể tích của hình là :
\(V = {1 \over 3}\pi h.\left( {R_1^2 + R_2^2 + {R_1}{R_2}} \right) \)
\(= {1 \over 3}\pi .IK.\left[ {{{\left( {{{AC} \over 2}} \right)}^2} + {{\left( {{{BD} \over 2}} \right)}^2} + {{AC} \over 2}.{{BD} \over 2}} \right]\)
\(={1 \over 3}\pi .{{R\left( {\sqrt 3 + 1} \right)} \over 2}.\left[ {{{\left( {{{R\sqrt 3 } \over 2}} \right)}^2} + {{\left( {{R \over 2}} \right)}^2} + {{R\sqrt 3 } \over 2}.{R \over 2}} \right]\)
\(={1 \over 3}\pi .{{R\left( {\sqrt 3 + 1} \right)} \over 2}\left[ {{{3{R^2} + {R^2} + {R^2}\sqrt 3 } \over 4}} \right]\)
\(={1 \over 6}\pi R\left( {\sqrt 3 + 1} \right).{{{R^2}\left( {4 + \sqrt 3 } \right)} \over 4} \)
\(= {1 \over {24}}\pi {R^3}\left( {\sqrt 3 + 1} \right)\left( {4 + \sqrt 3 } \right)\).
LG bài 2
Lời giải chi tiết:
Chi tiết máy gồm hai hình trụ :
- Hình trụ thứ nhất có chiều cao là 2 (đvđd), bán kính đáy là
\(10 : 2 = 5\) (đvđd)
- Hình trụ thứ hai có chiều cao là 5 (đvđd), bán kính đáy là
\(4 : 2 = 2 \) (đvđd).
Gọi S1, S2 lần lượt là diện tích bề mặt của hình trụ thứ nhất và hình trụ thứ hai, ta có :
\({S_1} = 2\pi {R_1}{h_1} + 2\pi R_1^2\)\(\; = 2\pi .5.2 + 2\pi {.5^2} = 70\pi \) (đvdt)
\({S_2} = 2\pi {R_2}{h_2} + 2\pi R_2^2 \)\(\;= 2\pi .2.5 + 2\pi {.2^2} = 28\pi \) (đvdt)
Vậy diện tích bề mặt của chi tiết máy \({S_1} + {S_2} - \pi R_2^2 = 94\pi \) (đvdt)
Tương tự, gọi V1, V2 lần lượt là thể tích của hình trụ thứ nhất và hình trụ thứ hai, ta có : \({V_1} = \pi R_1^2{h_1} = \pi {.5^2}.2 = 50\pi \) (đvdt)
\({V_2} = \pi R_2^2{h_2} = \pi {.2^2}.5 = 20\pi \) (đvdt)
Vậy thể tích của chi tiết máy là \({V_1} + {\rm{ }}{V_2} = 50\pi + 20\pi = 70\pi \) (đvdt).
soanvan.me