Lựa chọn câu để xem lời giải nhanh hơn

Câu 5.

Khoanh tròn vào chữ cái trước khẳng định đúng.

(A) Nếu nhân tử thức của một phân thức với một đa thức thì được một phân thức bằng phân thức đã cho.

(B) Nếu nhân mẫu thức của một phân thức với một đa thức thì được một phân thức bằng phân thức đã cho.

(C) Nếu nhân cả tử thức và mẫu thức của một phân thức với một đa thức thì được một phân thức bằng phân thức đã cho.

(D) Nếu nhân cả tử thức và mẫu thức của một phân thức với một đa thức khác đa thức 0 thì được một phân thức bằng phân thức đã cho. 

Phương pháp giải:

Nếu nhân cả tử và mẫu của một phân thức với cùng một đa thức khác đa thức không thì được một phân thức bằng phân thức đã cho.

\( \dfrac{A}{B}= \dfrac{A.M}{B.M}\) ( \(M\) là một đa thức khác đa thức \(0\)) 

Giải chi tiết:

Chọn D.

Câu 6.

(A) Nếu chia tử thức của một phân thức cho một đa thức thì được một phân thức bằng phân thức đã cho.

(B) Nếu chia mẫu thức của một phân thức cho một đa thức thì được một phân thức bằng phân thức đã cho.

(C) Nếu chia cả tử thức và mẫu thức của một phân thức cho một nhân tử chung của chúng thì được một phân thức bằng phân thức đã cho.

(D) Nếu chia cả tử thức và mẫu thức của một phân thức cho một đa thức thì được một phân thức bằng phân thức đã cho. 

Phương pháp giải:

Nếu chia cả tử và mẫu của một đa thức cho một nhân tử chung của chúng thì được một phân thức bằng phân thức đã cho.

\( \dfrac{A}{B}= \dfrac{A : N}{B : N}\) ( \(N\) là một nhân tử chung)

Giải chi tiết:

Chọn C.

Câu 7.

Ta có:

\(\begin{array}{l}(A)\,\,\dfrac{{ - A}}{B} = \dfrac{A}{B}\,\,\,\,\,\,\,\,\,\,\,\,(B)\,\,\dfrac{{ - A}}{B} = \dfrac{A}{{ - B}}\\(C)\,\,\dfrac{A}{{ - B}} = \dfrac{A}{B}\,\,\,\,\,\,\,\,\,\,\,\,\,\,(D)\,\,\dfrac{{ - A}}{B} = \dfrac{{ - A}}{{ - B}}\end{array}\) 

Phương pháp giải:

- Nếu nhân cả tử và mẫu của một phân thức với cùng một đa thức khác đa thức không thì được một phân thức bằng phân thức đã cho.

\( \dfrac{A}{B}= \dfrac{A.M}{B.M}\) ( \(M\) là một đa thức khác đa thức \(0\))

- Nếu chia cả tử và mẫu của một đa thức cho một nhân tử chung của chúng thì được một phân thức bằng phân thức đã cho. 

\( \dfrac{A}{B}= \dfrac{A : N}{B : N}\) ( \(N\) là một nhân tử chung).

Giải chi tiết:

\(\begin{array}{l}\dfrac{{ - A}}{B} = \dfrac{{ - A.\left( { - 1} \right)}}{{B.\left( { - 1} \right)}} = \dfrac{A}{{ - B}} \ne \dfrac{A}{B}\,\,\\\,\dfrac{{ - A}}{B} = \dfrac{{ - A.\left( { - 1} \right)}}{{B.\left( { - 1} \right)}} = \dfrac{A}{{ - B}}\\\dfrac{A}{{ - B}} = \dfrac{{A.\left( { - 1} \right)}}{{ - B.\left( { - 1} \right)}} = \dfrac{{ - A}}{B}\,\,\, \ne \dfrac{A}{B}\\\dfrac{{ - A}}{B} = \dfrac{{ - A.\left( { - 1} \right)}}{{B.\left( { - 1} \right)}} = \dfrac{A}{{ - B}} \ne \dfrac{{ - A}}{{ - B}}\end{array}\) 

Chọn B.

Câu 8.

Áp dụng quy tắc đổi dấu vào phâ thức \(\dfrac{{3 - 4x}}{{{{\left( {1 - x} \right)}^2}}}\)  ta có:

\(\begin{array}{l}(A)\,\,\dfrac{{3 - 4x}}{{{{\left( {1 - x} \right)}^2}}} = \dfrac{{ - \left( {3 - 4x} \right)}}{{{{\left( {x - 1} \right)}^2}}}\\(B)\,\,\dfrac{{3 - 4x}}{{{{\left( {1 - x} \right)}^2}}} = \dfrac{{4x - 3}}{{{{\left( {x - 1} \right)}^2}}}\\(C)\,\,\dfrac{{3 - 4x}}{{{{\left( {1 - x} \right)}^2}}} = \dfrac{{ - \left( {3 - 4x} \right)}}{{{{\left( {1 - x} \right)}^2}}}\\(D)\,\,\dfrac{{3 - 4x}}{{{{\left( {1 - x} \right)}^2}}} = \dfrac{{4x - 3}}{{ - {{\left( {x - 1} \right)}^2}}}\end{array}\) 

Phương pháp giải:

Áp dụng:

- Quy tắc đổi dấu: \(\dfrac{A}{B} = \dfrac{{ - A}}{{ - B}}\)

- Tính chất: \({\left( {A - B} \right)^2} = {\left( {B - A} \right)^2}\)  

Giải chi tiết:

\(\dfrac{{3 - 4x}}{{{{\left( {1 - x} \right)}^2}}} = \dfrac{{ - \left( {3 - 4x} \right)}}{{ - {{\left( {1 - x} \right)}^2}}} = \dfrac{{4x - 3}}{{ - {{\left( {x - 1} \right)}^2}}}\)

Chọn D. 

soanvan.me