Lựa chọn câu để xem lời giải nhanh hơn

Câu 17

Phương trình \(\sqrt {75} x - \left( {\sqrt {12}  + \sqrt 3 } \right)x = 6\) tương đương với phương trình

(A) \(20\sqrt 3 x = 6\)                         (B) \(\sqrt {60} x = 6\)

(C) \(2\sqrt 3 x = 6\)                           (D) \(4\sqrt 3 x = 6\)

Phương pháp giải:

- Rút gọn biểu thức chứa căn đã cho.

- Lựa chọn đáp án đúng.

Lời giải chi tiết:

Ta có: \(\sqrt {75} x - \left( {\sqrt {12}  + \sqrt 3 } \right)x = 6\)\( \Leftrightarrow \left( {\sqrt {75}  - \sqrt {12}  - \sqrt 3 } \right)x = 6\) \( \Leftrightarrow \left( {5\sqrt 3  - 2\sqrt 3  - \sqrt 3 } \right)x = 6\) \(\Leftrightarrow 2\sqrt 3 x = 6\)

Đáp án cần chọn là C.

Câu 18

Giá trị của \(\dfrac{{5\sqrt 2  - 2\sqrt 5 }}{{\sqrt {10}  - 2}}\) bằng

(A) \(\sqrt 5 \)                                     (B) 5

(C) \(\sqrt 2 \)                          (D) 2

Phương pháp giải:

Biến đổi biểu thức chứa căn để tìm giá trị của biểu thức đã cho.

Lời giải chi tiết:

\(\dfrac{{5\sqrt 2  - 2\sqrt 5 }}{{\sqrt {10}  - 2}}\)\( = \dfrac{{\left( {5\sqrt 2  - 2\sqrt 5 } \right)\left( {\sqrt {10}  + 2} \right)}}{{\left( {\sqrt {10}  - 2} \right)\left( {\sqrt {10}  + 2} \right)}}\) \( = \dfrac{{5\sqrt {20}  + 10\sqrt 2  - 2\sqrt {50}  - 4\sqrt 5 }}{{10 - 4}}\) \( = \dfrac{{10\sqrt 5  + 10\sqrt 2  - 10\sqrt 2  - 4\sqrt 5 }}{6}\) \( = \dfrac{{6\sqrt 5 }}{6} = \sqrt 5 \)

Đáp án cần chọn là A.

Câu 19

Giá trị của \(\dfrac{{\sqrt 5  - \sqrt 3 }}{{\sqrt 5  + \sqrt 3 }} - \dfrac{{\sqrt 5  + \sqrt 3 }}{{\sqrt 5  - \sqrt 3 }}\)

(A) \( - \sqrt {15} \)                             (B) \( - 2\sqrt {15} \) 

(C) \(\sqrt {15} \)                                 (D) \(2\sqrt {15} \)

Phương pháp giải:

- Quy đồng mẫu số rồi thực hiện phép tính trừ.

Lời giải chi tiết:

\(\dfrac{{\sqrt 5  - \sqrt 3 }}{{\sqrt 5  + \sqrt 3 }} - \dfrac{{\sqrt 5  + \sqrt 3 }}{{\sqrt 5  - \sqrt 3 }}\)\( = \dfrac{{{{\left( {\sqrt 5  - \sqrt 3 } \right)}^2} - {{\left( {\sqrt 5  + \sqrt 3 } \right)}^2}}}{{\left( {\sqrt 5  + \sqrt 3 } \right)\left( {\sqrt 5  - \sqrt 3 } \right)}}\) \( = \dfrac{{8 - 2\sqrt {15}  - \left( {8 + 2\sqrt {15} } \right)}}{{5 - 3}}\)\(= \dfrac{{ - 4\sqrt {15} }}{2} =  - 2\sqrt {15} \) 

Đáp án cần chọn là B.

soanvan.me