Lựa chọn câu để xem lời giải nhanh hơn

TH6

a) Quy đồng mẫu các phân số sau:

i.\(\frac{5}{{12}}\) và \(\frac{7}{{30}}\);          ii.\(\frac{1}{2};\,\,\frac{3}{5}\) và \(\frac{5}{8}\).

b) Thực hiện các phép tính sau:

i.\(\frac{1}{6} + \frac{5}{8}\);               ii.\(\frac{{11}}{24} - \frac{7}{{30}}\)

Phương pháp giải:

a) Muốn quy đồng mẫu số nhiều phân số ta có thể làm như sau:

Bước 1: Tìm một bội chung của các mẫu số (thường là BCNN) để làm mẫu số chung.

Bước 2: Tìm thừa số phụ của mỗi mẫu số (bằng cách chia mẫu số chung cho từng mẫu số riêng).

Bước 3: Nhân tử số và mẫu số của mỗi phân số với thừa số phụ tương ứng.

b) Quy đồng mẫu số các phân số rồi thực hiện phép tính

Lời giải chi tiết:

a)

i.Ta có: BCNN(12, 30) = 60

60 : 12 = 5; 60 : 30 = 2. Do đó:

\(\frac{5}{{12}} = \frac{{5.5}}{{12.5}} = \frac{{25}}{{60}}\) và \(\frac{7}{{30}} = \frac{{7.2}}{{30.2}} = \frac{{14}}{{60}}.\)

ii.Ta có: BCNN(2, 5, 8) = 40

40 : 2 = 20; 40 : 5 = 8; 40 : 8 = 5. Do đó:

\(\frac{1}{2} = \frac{{1.20}}{{2.20}} = \frac{{20}}{{40}}\)

\(\frac{3}{5} = \frac{{3.8}}{{5.8}} = \frac{{24}}{{40}}\)

\(\frac{5}{8} = \frac{{5.5}}{{8.5}} = \frac{{25}}{{40}}\).

b)

i.Ta có: BCNN(6, 8) = 24

24 : 6 = 4; 24: 8 = 3. Do đó

\(\begin{array}{l}\frac{1}{6} + \frac{5}{8} = \frac{{1.4}}{{6.4}} + \frac{{5.3}}{{8.3}}\\ = \frac{4}{{24}} + \frac{{15}}{{24}} = \frac{{19}}{{24}}.\end{array}\)

ii. Ta có: BCNN(24, 30) = 120

120: 24 = 5; 120: 30 = 4. Do đó:

\(\begin{array}{l}\frac{{11}}{{24}} - \frac{7}{{30}} = \frac{{11.5}}{{24.5}} - \frac{{7.4}}{{30.4}}\\ = \frac{{55}}{{120}} - \frac{{28}}{{120}} = \frac{{27}}{{120}} = \frac{9}{{40}}\end{array}\)