Câu hỏi 1 :
Con hãy chọn đáp án đúng nhất

Một hình thoi có độ dài  hai đường chéo là \(m,\,\,n\). Khi đó công thức tính diện tích hình thoi đó là:

A. \(S = (m + n) \times 2\) \(\)

B. \(S =  m:n \times 2\)

C. \(S = m \times n\)

D. \(S = \dfrac{{m \times n}}{2}\)

Đáp án của giáo viên lời giải hay

D. \(S = \dfrac{{m \times n}}{2}\)

Lời giải chi tiết :

Diện tích hình thoi bằng tích độ dài hai đường chéo chia cho \(2\) (cùng một đơn vị đo).

Do đó, hình thoi có độ dài hai đường chéo là \(m,\,\,n\) thì diện được tính theo công thức:  \(S = \dfrac{{m \times n}}{2}\).

Câu hỏi 2 :
Con hãy chọn những đáp án đúng (Được chọn nhiều đáp án)

Trong các hình sau, hình nào là hình thoi?

Đáp án của giáo viên lời giải hay

Phương pháp giải :

Quan sát các hình vẽ và áp dụng tính chất: hình thoi có hai cặp cạnh đối diện song song và bốn cạnh bằng nhau.

Lời giải chi tiết :

Quan sát các hình đã cho ta thấy hình thứ nhất và thứ hai từ trên xuống là hình thoi.

Hình thứ ba là hình thang và hình thứ tư là hình bình hành.

Câu hỏi 3 :
Con hãy chọn đáp án đúng nhất

Diện tích hình thoi có độ dài hai đường chéo là \(17cm\) và \(8cm\) là:

A. \(25c{m^2}\)

B. \(50c{m^2}\)

C. \(68c{m^2}\)

D. \(136c{m^2}\)

Đáp án của giáo viên lời giải hay

C. \(68c{m^2}\)

Phương pháp giải :

Độ dài hai đường chéo đã có cùng đơn vị đo nên để tính diện tích ta lấy tính tích  độ dài hai đường chéo rồi chia cho \(2\).

Lời giải chi tiết :

Diện tích hình thoi đó là:

            \(\dfrac{{17 \times 8}}{2} = 68\left( {c{m^2}} \right)\)  

                                 Đáp số: \(68c{m^2}\).

Câu hỏi 4 :
Con hãy điền từ / cụm từ/ số thích hợp vào các ô trống

Cho hình thoi ABCD, biết \(BD = 18dm\,;\,\,AC = 25dm\).

Diện tích hình thoi ABCD là 

 \(dm^2\).

Đáp án của giáo viên lời giải hay

Diện tích hình thoi ABCD là 

 \(dm^2\).

Phương pháp giải :

Hình thoi đã cho có hai đường chéo là AC và BD. Để tính diện tích ta lấy tích độ dài hai đường chéo chia cho \(2\).

Lời giải chi tiết :

Diện tích hình thoi ABCD là:

            \(25 \times 18:2 = 225\left( {d{m^2}} \right)\)  

                                 Đáp số: \(225d{m^2}\).

Vậy đáp án đúng điền vào ô trống là \(225\).

Câu hỏi 5 :
Con hãy điền từ / cụm từ/ số thích hợp vào các ô trống

Điền số thích hợp vào ô trống:

Hình thoi có độ dài các đường chéo là \(37dm\) và \(4m\) có diện tích là: 

\(dm^2\).

Đáp án của giáo viên lời giải hay

Hình thoi có độ dài các đường chéo là \(37dm\) và \(4m\) có diện tích là: 

\(dm^2\).

Phương pháp giải :

Độ dài hai đường chéo chưa cùng đơn vị đo nên ta đổi về cùng đơn vị đo, sau đó để tính diện tích ta lấy tích độ dài hai đường chéo chia cho \(2\).

Lời giải chi tiết :

Đổi:  \(4m = 40dm\).

Diện tích hình thoi đó là:

          \(37 \times 40:2 = 740\left( {d{m^2}} \right)\)  
                        Đáp số: \(740d{m^2}\).

Vậy đáp án đúng điền vào ô trống là \(740\).

Câu hỏi 6 :
Con hãy chọn đáp án đúng nhất

Một hình thoi có diện tích là \(224c{m^2}\) và độ dài đường chéo lớn là \(28cm\) .Vậy độ dài đường chéo bé là:

A. \(8cm\)

B. \(10cm\)

C. \(12cm\)

D. \(16cm\)   

Đáp án của giáo viên lời giải hay

D. \(16cm\)   

Phương pháp giải :

Từ công thức tính diện tích hình thoi: \(S\,= \,\dfrac{{m \times n}}{2}\), ta có thể suy ra công thức tính độ dài một đường chéo là \(m = S \times 2:n\); hoặc \(n = S \times 2:m\).

Lời giải chi tiết :

Độ dài đường chéo bé của hình thoi đó là:

          \(224 \times 2:28 = 16\,\,(cm)\)

                                        Đáp số: \(16cm\).

Câu hỏi 7 :
Con hãy chọn đáp án đúng nhất

Một mảnh đất dạng hình thoi có độ dài đường chéo bé là \(68m\), độ dài đường chéo lớn gấp đôi đường chéo bé. Diện tích mảnh đất đó là:

A. \(4264{m^2}\)

B. \(4624{m^2}\)

C. \(8528{m^2}\)

D. \(9248{m^2}\)

Đáp án của giáo viên lời giải hay

B. \(4624{m^2}\)

Phương pháp giải :

- Tính độ dài đường chéo lớn ta lấy độ dài đường chéo bé nhân với \(2\).

- Tính diện tích mảnh đất đó ta lấy tích độ dài hai đường chéo chia cho \(2\) .

Lời giải chi tiết :

Độ dài đường chéo lớn của mảnh đất đó là:

            $68 \times 2 = 136\,\,(m)$

Diện tích của mảnh đất đó là:

            $136 \times 68:2 = 4624\,\,({m^2})$

                                    Đáp số: \(4624{m^2}\)

Câu hỏi 8 :
Con hãy chọn đáp án đúng nhất

Cho hình vẽ như sau:

Hình thoi ABCD có O là giao điểm của hai đường chéo, \(OA = 9cm,\,\,OB = 6cm\). Biết rằng hình thoi có hai đường chéo vuông góc với nhau và cắt nhau tại trung điểm của mỗi đường. Em hãy chọn khẳng định đúng:

A. Diện tích hình thoi bằng diện tích hình vuông.

B. Diện tích hình thoi lớn hơn diện tích hình vuông.

C. Diện tích hình thoi bé hơn diện tích hình vuông.

Đáp án của giáo viên lời giải hay

C. Diện tích hình thoi bé hơn diện tích hình vuông.

Phương pháp giải :

- Tính độ dài đường chéo AC, BD:  \(AC = OA \times 2\,\,;\,\,\,BD = OB \times 2\,\).

- Tính diện tích hình thoi ta lấy tích độ dài hai đường chéo chia cho \(2\).

- Tính diện tích hình vuông ta lấy cạnh nhân với cạnh.

- So sánh hai số đo diện tích rồi rút ra kết luận.

Lời giải chi tiết :

Độ dài đường chéo AC là:

          \(9 \times 2 = 18\,\,(cm)\)

Độ dài đường chéo BD là:

          \(6 \times 2 = 12\,\,(cm)\)

Diện tích hình thoi ABCD là:

          \(18 \times 12:2 = 108\,(c{m^2})\)

Diện tích hình vuông MNPQ là:

          \(11 \times 11 = 121\,(c{m^2})\)

Mà: \(108c{m^2} < 121c{m^2}\)

Vậy diện tích hình thoi bé hơn diện tích hình vuông.

Câu hỏi 9 :
Con hãy chọn đáp án đúng nhất

Hình thoi ABCD có độ dài cạnh AB là \(a\).

Công thức tính chu vi P của hình thoi là:

                        \(P = a \times 4\)        

Áp dụng công thức trên để tính chu vi hình thoi biết  \(a = 38cm\).

A. \(132cm\)  

B. \(142cm\)

C. \(152cm\)

D. \(162cm\)

Đáp án của giáo viên lời giải hay

C. \(152cm\)

Phương pháp giải :

Thay \(a = 38cm\) vào biểu thức \(P = a \times 4\) rồi tính giá trị biểu thức đó.

Lời giải chi tiết :

Nếu \(a = 36cm\) thì \(P = a \times 4 = 38 \times 4 = 152\,\,(cm)\)

Vậy chu vi hình thoi đó là \(152cm\).

Câu hỏi 10 :
Con hãy tích vào ô đúng hoặc sai cho mỗi câu (khẳng định) dưới đây.

Chọn đáp án đúng hoặc sai cho mỗi khẳng định bên dưới:

Trong hình thoi MNPQ:

MN và PQ không bằng nhau.

Đúng
Sai

MN không song song với MQ

Đúng
Sai

Các cặp cạnh đối diện song song.

Đúng
Sai

MN = NP = PQ = QM

Đúng
Sai
Đáp án của giáo viên lời giải hay

MN và PQ không bằng nhau.

Đúng
Sai

MN không song song với MQ

Đúng
Sai

Các cặp cạnh đối diện song song.

Đúng
Sai

MN = NP = PQ = QM

Đúng
Sai
Phương pháp giải :

Quan sát các hình vẽ và áp dụng tính chất: hình thoi có hai cặp cạnh đối diện song song và bốn cạnh bằng nhau.

Lời giải chi tiết :

Trong hình thoi MNPQ ta có: 

- Hai cặp cạnh đối diện song song: MN song song với PQ, NP song song với MQ.

- Bốn cạnh bằng nhau: MN = NP = PQ = QM.

Vậy các khẳng định đúng là b,c, d; khẳng định sai là a.

Câu hỏi 11 :
Con hãy điền từ / cụm từ/ số thích hợp vào các ô trống

Điền số thích hợp vào ô trống:

Một thoi có diện tích là \(8d{m^2}\) và độ dài một đường chéo là \(32cm\). 


Vậy độ dài đường chéo còn lại là 

 \(cm\).

Đáp án của giáo viên lời giải hay

Một thoi có diện tích là \(8d{m^2}\) và độ dài một đường chéo là \(32cm\). 


Vậy độ dài đường chéo còn lại là 

 \(cm\).

Phương pháp giải :

- Đổi \(8d{m^2}\) sang đơn vị đo là \(c{m^2}\).

- Từ công thức tính diện tích hình thoi: \(S\,\,\, = \,\,\,\dfrac{{m \times n}}{2}\), ta có thể suy ra công thức tính độ dài một đường chéo là: \(m = S \times 2:n\); hoặc \(n = S \times 2:m\).

Lời giải chi tiết :

Đổi: \(8d{m^2} = 800c{m^2}\)

Độ dài đường chéo còn lại là:

          \(800 \times 2:32 = 50\,\,(cm)\)

                                        Đáp số: \(50cm\).

Vậy đáp án đúng điền vào ô trống là \(50\).

Câu hỏi 12 :
Con hãy điền từ / cụm từ/ số thích hợp vào các ô trống

Điền số thích hợp vào ô trống:

 

Cho hình thoi ABCD. Biết  $AC = 36cm$, độ dài đường chéo BD bằng \(\dfrac{3}{4}\) độ dài đường chéo AC. 


 Vậy diện tích hình thoi đó là 

 \(cm^2\).

Đáp án của giáo viên lời giải hay

Cho hình thoi ABCD. Biết  $AC = 36cm$, độ dài đường chéo BD bằng \(\dfrac{3}{4}\) độ dài đường chéo AC. 


 Vậy diện tích hình thoi đó là 

 \(cm^2\).

Phương pháp giải :

- Tính độ dài đường chéo BD ta lấy độ dài đường chéo AC nhân với \(\dfrac{3}{4}\).

- Tính diện tích hình thoi ta lấy tích độ dài hai đường chéo chia cho \(2\).

Lời giải chi tiết :

Độ dài đường chéo BD là:

            \(36 \times \dfrac{3}{4} = 27\;(cm)\)

Diện tích của hình thoi ABCD là:

            $36 \times 27:2 = 486\;(c{m^2})$

                                    Đáp số: \(486c{m^2}\).

Vậy đáp án đúng điền vào ô trống là \(486\).

Câu hỏi 13 :
Con hãy chọn đáp án đúng nhất

Cho hình vẽ như sau:

Hình thoi MNPQ có độ dài cạnh là \(32cm\). Tổng độ dài hai đường chéo là \(84cm\), hiệu độ dài hai đường chéo là \(12cm\). Độ dài chiều cao NK là:

A. \(27cm\)  

B. \(36cm\)

C. \(54cm\)

D. \(72cm\)

Đáp án của giáo viên lời giải hay

A. \(27cm\)  

Phương pháp giải :

- Ta có tổng và hiệu của hai đường chéo. Ta sẽ tìm hai đường chéo theo công thức tìm hai số khi biết tổng và hiệu của hai số đó:

            Số lớn = (Tổng + Hiệu) \(:\,\,2\) ;        Số bé = (Tổng – hiệu) \(:\,\,2\)

- Tính diện tích hình thoi ta lấy tích độ dài hai đường chéo chia cho \(2\) .

- Vì hình thoi có các cặp cạnh đối diện song song và bằng nhau nên hình thoi cũng chính là hình bình hành. Để tính độ dài chiều cao NK ta lấy diện tích chia cho độ dài cạnh đáy PQ.

Lời giải chi tiết :

Ta có sơ đồ:

Độ dài đường chéo MP là:

            \((84 + 12):2 = 48\left( {cm} \right)\)

Độ dài đường chéo NQ là:

            \(84 - 48 = 36\,\,\left( {cm} \right)\)

Diện tích hình thoi đó là:

            \(48 \times 36:2 = 864\left( {{m^2}} \right)\)

Độ dài chiều cao NK là:

            \(864:32 = 27\,\,(cm)\)

                              Đáp số: \(27cm\).

Câu hỏi 14 :
Con hãy điền từ / cụm từ/ số thích hợp vào các ô trống

Điền số thích hợp vào ô trống:

Một hình thoi có diện tích bằng diện tích của hình chữ nhật có chiều dài \(75cm\), chiều rộng kém chiều dài $33cm$. Biết đường chéo thứ nhất của hình thoi dài \(50cm\). 


 Vậy độ dài đường chéo còn lại của hình thoi là 

 \(cm\).

Đáp án của giáo viên lời giải hay

Một hình thoi có diện tích bằng diện tích của hình chữ nhật có chiều dài \(75cm\), chiều rộng kém chiều dài $33cm$. Biết đường chéo thứ nhất của hình thoi dài \(50cm\). 


 Vậy độ dài đường chéo còn lại của hình thoi là 

 \(cm\).

Phương pháp giải :

- Tính số đo chiều rộng ta lấy số đo chiều dài trừ đi $33cm$.

- Tính diện tích hình chữ nhật ta lấy chiều dài nhân với chiều rộng. 

  Từ đó ta có diện tích hình thoi.

- Tính độ dài đường chéo còn lại ta lấy \(2\) lần diện tích hình thoi chia cho độ dài đường chéo đã biết.

Lời giải chi tiết :

Chiều rộng của hình chữ nhật là:

            \(75 - 33 = 42\,(cm)\)

Diện tích hình chữ nhật là:

           \(75 \times 42 = 3150\,(c{m^2})\)

Vậy diện tích hình thoi là \(3150c{m^2}\).

Độ dài đường chéo còn lại của hình thoi là:

           $3150 \times 2:50 = 126{\rm{ }}\left( {cm} \right)$

                               Đáp số: \(126cm\).

Vậy đáp án đúng điền vào ô trống là \(126\).