Đề bài

Thực hiện phép chia:

a) \(2{x^2}:x\)

b) \(5{x^4}:2{x^2}\) ;

c) \(( - 8{x^2}):4x\) ;

d) \(x{y^3}{z^4}:( - 3xyz)\) ;

e) \({2 \over 3}{x^3}{y^4}:\left( {{{ - 4} \over 9}{x^2}{y^3}} \right)\) .

Lời giải chi tiết

\(\eqalign{  & a)\,\,2{x^2}:x = {{2{x^2}} \over x} = 2{x^{2 - 1}} = 2x  \cr  & b)\,\,5{x^4}:\left( {2{x^2}} \right) = {{5{x^4}} \over {2{x^2}}} = {5 \over 2}.{{{x^4}} \over {{x^2}}} = {5 \over 2}{x^{4 - 2}} = {5 \over 2}{x^2}  \cr  & c)\,\,\left( { - 8{x^2}} \right):\left( {4x} \right) = {{ - 8{x^2}} \over {4x}} = {{ - 8} \over 4}.{{{x^2}} \over x} =  - 2{x^{2 - 1}} =  - 2x  \cr  & d)\,\,x{y^3}{z^4}:\left( { - 3xyz} \right) = {{x{y^3}{z^4}} \over { - 3xyz}} = {1 \over { - 3}}.{{x{y^3}{z^4}} \over {xyz}} =  - {1 \over 3}{y^2}{z^3}  \cr  & e)\,\,{2 \over 3}{x^3}{y^4}:\left( { - {4 \over 9}{x^2}{y^3}} \right) = {{{2 \over 3}{x^3}{y^4}} \over { - {4 \over 9}{x^2}{y^3}}} = {{{2 \over 3}} \over { - {4 \over 9}}}.{{{x^3}{y^4}} \over {{x^2}{y^3}}} = {{{2 \over 3}} \over { - {{\left( {{2 \over 3}} \right)}^2}}}xy = {1 \over { - {2 \over 3}}}xy =  - {3 \over 2}xy \cr} \)

soanvan.me