Đề bài

Tìm các số thực p và q sao cho hàm số

\(f(x) = x + p + {q \over {x + 1}}\)

Đạt cực đại tại điểm \(x =  - 2{\rm{ }}\) và \({\rm{ }}f\left( { - 2} \right) =  - 2\).

Lời giải chi tiết

Ta có

\(f'(x) = 1 - {q \over {{{\left( {x + 1} \right)}^2}}}\)  với mọi \(x \ne  - 1\)

- Nếu \(q \le 0\) thì \(f'(x) > 0\) với mọi \(x \ne  - 1\).

Do đó hàm số đồng biến trên mỗi khoảng \(\left( { - \infty ; - 1} \right)\) và \(\left( { - 1; + \infty } \right)\).

Hàm số không có cực đại, cực tiểu.

- Nếu q > 0 thì phương trình

\(f'(x) = {{{x^2} + 2x + 1 - q} \over {{{\left( {x + 1} \right)}^2}}} = 0\)

Có hai nghiệm phân biệt \({x_1} =  - 1 - \sqrt q \) và \({x_2} =  - 1 + \sqrt q \)

Hàm số đạt cực đại tại điểm \({x_1} =  - 1 - \sqrt q \) và đạt cực tiểu tại điểm \({x_2} =  - 1 + \sqrt q \).

Hàm số đạt cực đại tại điểm x = -2 khi và chỉ khi

\( - 1 - \sqrt q  =  - 2 \Leftrightarrow \sqrt q  = 1 \) \(\Leftrightarrow q = 1\)

\(f(-2) =  - 2 \Leftrightarrow p = 1\)

soanvan.me