Đề bài

Số tiệm cận của đồ thị hàm số \(y = \dfrac{{3x + 1}}{{3 - 2x}}\) là:

A. \(0\)                               B. \(1\)

C. \(2\)                               D. \(3\)

Phương pháp giải - Xem chi tiết

Sử dụng lý thuyết:

- Tiệm cận đứng: Đường thẳng \(x = {x_0}\) được gọi là tiệm cận đứng của đồ thị hàm số \(y = f\left( x \right)\) nếu nó thỏa mãn một trong 4 điều kiện sau: \(\left[ \begin{array}{l}\mathop {\lim }\limits_{x \to x_0^ + } y =  + \infty \\\mathop {\lim }\limits_{x \to x_0^ + } y =  - \infty \\\mathop {\lim }\limits_{x \to x_0^ - } y =  + \infty \\\mathop {\lim }\limits_{x \to x_0^ - } y =  - \infty \end{array} \right.\)

- Tiệm cận ngang: Đường thẳng \(y = {y_0}\) được gọi là tiệm cận ngang của đồ thị hàm số \(y = f\left( x \right)\) nếu nó thỏa mãn một trong 2 điều kiện sau: \(\left[ \begin{array}{l}\mathop {\lim }\limits_{x \to  + \infty } y = {y_0}\\\mathop {\lim }\limits_{x \to  - \infty } y = {y_0}\end{array} \right.\)

Lời giải chi tiết

Ta có: \(\mathop {\lim }\limits_{x \to  \pm \infty } y = \mathop {\lim }\limits_{x \to  \pm \infty } \dfrac{{3x + 1}}{{3 - 2x}} =  - \dfrac{3}{2}\) nên \(y =  - \dfrac{3}{2}\) là đường tiệm cận ngang.

\(\mathop {\lim }\limits_{x \to {{\left( {\dfrac{3}{2}} \right)}^ + }} y = \mathop {\lim }\limits_{x \to {{\left( {\dfrac{3}{2}} \right)}^ + }} \dfrac{{3x + 1}}{{3 - 2x}} =  - \infty \) và \(\mathop {\lim }\limits_{x \to {{\left( {\dfrac{3}{2}} \right)}^ - }} y = \mathop {\lim }\limits_{x \to {{\left( {\dfrac{3}{2}} \right)}^ - }} \dfrac{{3x + 1}}{{3 - 2x}} =  + \infty \) nên \(x = \dfrac{3}{2}\) là đường tiệm cận đứng.

Vậy đồ thị hàm số có \(2\) đường tiệm cận.

Chọn C.

soanvan.me