Đề bài

Đồ thị hàm số nào sau đây có hai tiệm cận tạo với hai trục tọa độ một tứ giác có diện tích bằng \(12\)?

A. \(y = \dfrac{{3x + 2}}{{x - 2}}\)              B. \(y = \dfrac{{2x - 3}}{{1 - x}}\)

C. \(y = \dfrac{{x - 2}}{{x + 5}}\)                D. \(y = \dfrac{{3x + 7}}{{x - 4}}\)

Phương pháp giải - Xem chi tiết

- Tìm các đường tiệm cận của mỗi đò thị hàm số, sử dụng lý thuyết:

Đồ thị hàm số \(y = \dfrac{{ax + b}}{{cx + d}}\left( {ad - bc \ne 0} \right)\) có TCĐ \(x =  - \dfrac{d}{c}\) và TCN \(y = \dfrac{a}{c}\).

- Tính diện tích hình chữ nhật tạo thành và kết luận.

Lời giải chi tiết

Đáp án A: Đồ thị hàm số \(y = \dfrac{{3x + 2}}{{x - 2}}\) có đường TCĐ \(x = 2\) và TCN \(y = 3\).

Diện tích hình chữ nhật tạo thành là: \(2.3 = 6\). Đáp án A sai.

Đáp án B: Đồ thị hàm số \(y = \dfrac{{2x - 3}}{{1 - x}}\) có đường TCĐ \(x = 1\) và TCN \(y =  - 2\).

Diện tích hình chữ nhật tạo thành là: \(2.1 = 2\). Đáp án B sai.

Đáp án C: Đồ thị hàm số \(y = \dfrac{{x - 2}}{{x + 5}}\) có đường TCĐ \(x =  - 5\) và TCN \(y = 1\).

Diện tích hình chữ nhật tạo thành là: \(5.1 = 5\). Đáp án C sai.

Đáp án D: Đồ thị hàm số \(y = \dfrac{{3x + 7}}{{x - 4}}\) có đường TCĐ \(x = 4\) và TCN \(y = 3\).

Diện tích hình chữ nhật tạo thành là: \(4.3 = 12\). Đáp án D đúng.

Chọn D.

soanvan.me