Đề bài

Cho mạch điện xoay chiều gồm có điện trở \(R,\) cuộn cảm thuần \(L\) và tụ điện \(C\) mắc nối tiếp, điện áp ở hai đầu đoạn mạch \(u = 50\sqrt 2 cos100\pi t(V).\) Điện áp hiệu dụng ở hai đầu cuộn cảm và hai đầu tụ điện:  \({U_L} = 30V;{U_C} = 60V\)

a) Tính hệ số công suất của mạch.

b) Cho biết công suất tiêu thụ trong mạch là \(P = 20{\rm{W}}\). Xác định \(R,L,C.\)

Phương pháp giải - Xem chi tiết

a) Sử dụng công thức điện áp \({U^2} = U_R^2 + {({U_L} - {U_C})^2} \Rightarrow {U_R}\)

Sử dụng công thức tính hệ số công suất đoạn mạch \(\cos \varphi  = \dfrac{{{U_R}}}{U}\)

b) Sử dụng công thức tính công suất \(P = \dfrac{{{U_R}^2}}{R} \Rightarrow R\)

Sử dụng công thức \(I = \dfrac{{{U_R}}}{R} = \dfrac{{{U_L}}}{{{Z_L}}} = \dfrac{{{U_C}}}{{{Z_C}}}\)

Lời giải chi tiết

Ta có

\(\begin{array}{l}{U^2} = U_R^2 + {({U_L} - {U_C})^2}\\ \Rightarrow {U_R} = \sqrt {{U^2} - {{({U_L} - {U_C})}^2}} \\ = \sqrt {{{50}^2} - {{(30 - 60)}^2}}  = 40V\end{array}\)

Hệ số công suất đoạn mạch \(\cos \varphi  = \dfrac{{{U_R}}}{U} = \dfrac{{40}}{{50}} = 0,8\)

b) Công suất \(P = \dfrac{{{U_R}^2}}{R} \Rightarrow R = \dfrac{{{U_R}^2}}{P} = \dfrac{{{{40}^2}}}{{20}} = 80\Omega \)

Lại có \(I = \dfrac{{{U_R}}}{R} = \dfrac{{{U_L}}}{{{Z_L}}} = \dfrac{{{U_C}}}{{{Z_C}}} \\\Rightarrow {Z_L} = 60\Omega ;{Z_C} = 120\Omega \)

\({Z_L} = \omega L \\\Rightarrow L = \dfrac{{{Z_L}}}{\omega } = \dfrac{{60}}{{100\pi }} = \dfrac{3}{{5\pi }}\left( H \right)\)

\({Z_C} = \dfrac{1}{{\omega C}} \\\Rightarrow C = \dfrac{1}{{{Z_C}.\omega }} \\= \dfrac{1}{{120.100\pi }} = \dfrac{{25}}{{3\pi }}{.10^{ - 5}}\left( F \right)\)

soanvan.me